ON THE FUNDAMENTAL EXISTENCE THEOREM OF KISHI

MITSURU NAKAI

1. Notation and terminology. Let Ω be a locally compact Hausdorff space and G(x, y) be a strictly positive lower semicontinuous function on the product space $\Omega \times \Omega$ of Ω . Such a function G(x, y) is called a *kernel* on Ω . The *adjoint kernel* $\check{G}(x, y)$ of G(x, y) is defined by $\check{G}(x, y) = G(y, x)$. Whenever we say a measure on Ω , we mean a positive regular Borel measure on Ω . The *potential* $G_{\mu}(x)$ and the *adjoint potential* $\check{G}_{\mu}(x)$ of a measure μ relative to the kernel G(x, y) is defined by

$$G_{\mu}(\mathbf{x}) = \int G(\mathbf{x}, y) d\mu(y)$$
 and $\check{G}_{\mu}(\mathbf{x}) = \int \check{G}(\mathbf{x}, y) d\mu(y)$

respectively. These are also strictly positive lower semicontinuous functions on \mathcal{Q} provided $\mu \neq 0$.

We say that a kernel G(x, y) on Ω satisfies the *continuity principle* when, for any measure μ with compact support S_{μ} , the finite continuity of the restriction of $G_{\mu}(x)$ to S_{μ} implies the global finite continuity of $G_{\mu}(x)$ on Ω .

A property is said to hold G-p.p.p. on a subset X in Ω , when the property holds on X except a set E which does not contain any compact support S_{ν} of a measure $\nu \neq 0$ with finite G-energy $\int G_{\nu}(x) d\nu(x)$. Notice that $\int G_{\nu}(x) d\nu(x) = \int \check{G}_{\nu}(x) d\nu(x)$. Hence the notion G-p.p.p. is equivalent to that of \check{G} -p.p.p.

2. Result. M. Kishi [4] [5] proved the following important existence theorem in the potential theory with non-symmetric kernel:

Assume that the adjoint kernel $\check{G}(x, y)$ of G(x, y) satisfies the continuity principle. Given a non-empty separable compact subset K of Ω and a strictly positive finite upper semicontinuous function u(x) on K. Then there exists a measure μ with support S_{μ} in K such that

Received July 24, 1963.