ON UNIT GROUPS OF ABSOLUTE ABELIAN NUMBER FIELDS OF DEGREE pq

HIDEO YOKOI

In this note, we denote by Q the rational number field, by \mathbf{E}_{Ω} the whole unit group of an arbitrary number field Ω of finite degree, and by r_{Ω} the rank of \mathbf{E}_{Ω}^{*} , where generally \mathbf{G}^{*} for an arbitrary abelian group \mathbf{G} means a maximal torsion-free subgroup of \mathbf{G} . $(N_{K/\Omega}\mathbf{E}_{K})^{*}$ is shortly denoted by $N_{K/\Omega}^{*}\mathbf{E}_{K}$ and $(\mathbf{G}_{1}:\mathbf{G}_{2})$ is, as usual, the index of a subgroup \mathbf{G}_{2} in \mathbf{G}_{1} .

We first prove the following lemma.

LEMMA. Let **F** be a free abelian group of finite rank n, and **G** be a subgroup of **F** such that for a rational prime number l, **G** contains the group \mathbf{F}^l consisting of all the l-th powers α^l of α in **F**. Then, for an arbitrarily given basis $(\varepsilon_1, \ldots, \varepsilon_n)$ of **F**, **G** has the basis $(\omega_1, \ldots, \omega_n)$ of the following form:

$$\omega_i = \begin{cases} \varepsilon_{\pi_i}^l \cdot \cdots \cdot \cdots \cdot \cdots \cdot i = 1, \dots, s, \ (s \ge 0) \\ \varepsilon_{\pi_i} \prod_{j=1}^s \varepsilon_{\pi_j}^{a_{ij}} \cdot \cdots \cdot \cdots \cdot i = s+1, \dots, n, \end{cases}$$

where a_{ij} are rational integers with $0 \le a_{ij} < l$ and (π_1, \ldots, π_n) is a suitable permutation of $(1, \ldots, n)$.

Proof. By the elementary divisor theory, there exist a basis (f_1, \ldots, f_n) of **F** and a basis (g_1, \ldots, g_n) of **G** such that we may write $(g_1, \ldots, g_n) = (f_1, \ldots, f_n)L$, where L is a $n \times n$ diagonal matrix with diagonal elements e_{i+1}/e_i $(i = 1, \ldots, n-1)$. By the assumption, however, all the *l*-th powers of the elements in **F** are contained in **G**, so we have $e_1 = \cdots = e_s = l$, $e_{s+1} = \cdots = e_n = 1$ for some integer s $(0 \le s \le n)$. We express this basis (f_1, \ldots, f_n) of **F** by using the basis $(\varepsilon_1, \ldots, \varepsilon_n)$ of **F**:

$$(f_1,\ldots,f_n)=(\varepsilon_1,\ldots,\varepsilon_n)U,$$

where U is an unimodular matrix of degree n.

Received August 5, 1959.