ON UNRAMIFIED SEPARABLE ABELIAN *p*-EXTENSIONS OF FUNCTION FIELDS I

HISASI MORIKAWA

1. Let k be an algebraically closed field of characteristic p > 0. Let K/k be a function field of one variable and L/K be an unramified separable abelian extension of degree p^r over K. The galois automorphisms $\varepsilon_1, \ldots, \varepsilon_{p^r}$ of L/K are naturally extended to automorphisms $\eta(\varepsilon_1), \ldots, \eta(\varepsilon_{p^r})^{(1)}$ of the jacobian variety J_L of L/k. If we take a system of p-adic coordinates on J_L , we get a representation $\{M_p(\eta(\varepsilon_r))\}$ of the galois group G(L/K) of L/K over p-adic integers.

The aim the present note is to determine the *p*-adic integral representation $\{M_p(\eta(\varepsilon_v))\}$ for cyclic L/K (as a representation over *p*-adic integers). Use will be made of the results in our previous paper [2].

2. Let $\{H_0, H_1, \ldots, H_s\}$ be the set of all the subgroup of G(L/K) such that $G(L/K)/H_i$ $(i = 0, 1, \ldots, s)$ are cyclic, where H_0 means G(L/K). We denote by L_{H_i} the subfield of L corresponding to H_i .

We use the following notations:

 p^{ν_i} : the degree of L_{II_i} over K,

 $J_{L_{II}}$: the jacobian variety of L_{II}/k ,

 $\pi_{L'/L''}$: the trace mapping of $J_{L'}$ onto $J_{L''}$, where $L' \supset L''$,

 $B_{L'/L''}$: the irreducible component of $\pi_{L'/L''}(0)$ containing $\{0\}$,

 $\overline{A}_{L'/L''}$: the quotient abelian variety of $J_{L'}$ by $B_{L'/L''}$,

 $\alpha_{L'/L''}$: the natural homomorphism of $J_{L'}$ onto $A_{L'/L''}$,

 $\overline{\pi}_{L'/L''}$: the homomorphism of $A_{L'/L''}$ onto $J_{L''}$ such that $\overline{\pi}_{L'/L''} \alpha_{L'/L''} = \pi_{L'/L''}$,

 $\rho_{L'/L''}$: the cotrace mapping of $J_{L''}$ into $J_{L'}$,

 $\overline{B}_{L'/L''}$: the quotient abelian variety of $J_{L'}$ by $\rho_{L'/L''}(J_{L''})$,

f(n): the group consisting of all points t on f such that nt = 0, where f is an abelian variety.

Received May 8, 1958.

^{1) 2)} See 1.2 in [2].