ON THE DIMENSION OF MODULES AND ALGEBRAS, IV DIMENSION OF RESIDUE RINGS OF HEREDITARY RINGS

SAMUEL EILENBERG, HIROSI NAGAO and TADASI NAKAYAMA

A ring (with unit element) Λ is called semi-primary¹) if it contains a nilpotent two-sided ideal N such that the residue ring $\Gamma = \Lambda/N$ is semi-simple (i.e. l. gl. dim $\Gamma = r$. gl. dim $\Gamma = 0$). N is then the (Jacobson) radical of Λ . Auslander [1] has shown that if Λ is semi-primary then

l. gl. dim Λ = r. gl. dim Λ = l. dim_{Λ} Γ = 1 + l. dim_{Λ} N.

The common value is denoted by gl. dim Λ . On the other hand, for any ring Λ the following conditions are equivalent: (a) l. gl. dim $\Lambda \leq 1$, (b) each left ideal in Λ is projective, (c) every submodule of a projective left Λ -module is projective. Rings satisfying conditions (a)-(c) are called *hereditary*. For integral domains the notions of "hereditary ring" and "Dedekind ring" coincide.

If \mathfrak{a} is a two-sided ideal in Λ , there is in general very little relation between l.gl.dim Λ and l.gl.dim (Λ/\mathfrak{a}) ; it was however proved, substantially, in Eilenberg-Ikeda-Nakayama [4] that if Λ is semiprimary and \mathfrak{a} is contained in the radical N then

gl. dim $\Lambda \leq$ gl. dim $(\Lambda/\mathfrak{a}) + 1$. dim_{Λ} (Λ/\mathfrak{a}) .

Now, we show in §1, of the present note, that if Λ is hereditary and the sequence a^i (i = 1, 2, ...) becomes constant then gl.dim $(\Lambda/a) < \infty$. Thus if Λ is hereditary and semi-primary then gl.dim $(\Lambda/a) < \infty$, and we are able to give, in §2, rather precise estimates for gl.dim (Λ/a) .

In §3 we show by examples that the above results are the best possible; thus for each pair (m, n) with $0 < m \le \infty$, $0 < n \le \infty$, $(m, n) \ne (1, \infty)$ we construct a semi-primary ring Λ and a two-sided ideal \mathfrak{a} of Λ such that gl. dim $\Lambda = m$, gl. dim $(\Lambda/\mathfrak{a}) = n$.

Received October 15, 1955.

¹⁾ Our notion of "semi-primary" does not coincide with "halbprimär" of Deuring, Algebren, Ergebn. Math.