CORRECTIONS TO MY PAPER "ON KRULL'S CONJECTURE CONCERNING VALUATION RINGS"

MASAYOSHI NAGATA

The proof of Theorem 1 in the paper "On Krull's conjecture concerning valuation rings" (vol. 4 (1952) of this journal) is not correct.¹⁾ We want to give here a corrected proof of the theorem: From p. 30, l. 14 to p. 31, l. 7 should be changed as follows.

Further we observe that if $w(a-b) > 2\alpha$, then (x+a)/(x+b) is unit in 0. Hence we may assume that $w(a_i - b_j) < 2\alpha$ for any (i, j).

Next, we will show two lemmas concerning the valuations w_{λ} and w_e :

LEMMA A. Set $d = \prod_{1}^{n'} (x + a_i) / \prod_{1}^{m'} (x + b_j)$ and assume that $w(a_i) = w(b_j)$ = $\sigma (a < \sigma < 2\alpha)$ for any *i* and *j*. Let *e* be any element of K such that w(e)= σ . Then either $w_e(d) \ge w_o(d)$ or there exists one b_j such that $w_e(d) \ge w_{b_j}(d)$.

Proof. We may use the induction argument on m' + n'. Obviously $w_e(x + a_i) = \min(w(a_i - e), 2\alpha), w_e(x + b_j) = \min(w(b_j - e), 2\alpha)$: Let σ' be the maximum of these values. We renumber a_i and b_j so that $w_e(x + a_i) = w_e(x + b_j) = \sigma'$ if and only if $i \leq r, j \leq s$. Now it must be observed that $w_e(x + a_i) = w(a_j - a_1)$ or $w(a_i - b_1)$ for i > r, according to $r \neq 0$ or $s \neq 0$, and that similar fact holds for b_j .

1) When r = n', s = m' and $r \ge s$, we have obviously $w_e(d) \ge w_o(d)$.

2) When r < s and $r + s \neq m' + n'$: Set $d' = \prod_{i=1}^{r} (x + a_i) / \prod_{i=1}^{s} (x + b_i)$. Then $w_e(d') > w_\sigma(d')$ and therefore there exists on b_j $(j \leq s)$ such that $w_e(d') \ge w_{b_j}(d')$. Since the values of factors of d other than those of d' are invariant under the replacement of w_e by w_{b_j} , we have $w_e(d) \ge w_{b_j}(d)$.

3) When r = n', s = m' and r < s: Let σ^* be the minimum of values $w(a_i - a_{i'})$, $w(a_i - b_j)$ and $w(b_j - b_{j'})$ and let e^* be an element of K such that $w(a_i - e^*) = w(b_j - e^*) = \sigma^*$ for any i, j.²⁾ Then since $w_e(d) \ge w_e^*(d)$, we

Received May 22, 1955.

¹⁾ Prof. P. Ribenboim has communicated to the writer that the proof is not correct. The writer is grateful to him for his kind communication.

²⁾ Such elements e^* , e'' and so on exist because K is algebraically closed and therefore the residue class field of the valuation ring of w is algebraically closed (and contains infinitely many elements).