ON EXCEPTIONAL VALUES OF A MEROMORPHIC FUNCTION

MAKOTO OHTSUKA

1. M. Brelot [1] has shown that if u(z) is subharmonic in an open set D in the z-plane with boundary C and is bounded from above in a neighborhood of a boundary point z_0 , which is contained in a set $E \subset C$ of inner harmonic measure zero with respect to D, and such that z_0 is a regular point for Dirichlet problem in D, then

(1)
$$\overline{\lim_{\substack{z \to z_0 \\ z \in D}} u(z)} = \overline{\lim_{\substack{z' \to z_0 \\ z' \in C - F}} (\lim_{\substack{z \to z' \\ z \in D}} u(z))}.$$

Furthermore, it was shown that if f(z) is meromorphic in D, then, for any z_0 of E, which is in the closure of C - E, whether a regular point or not, the same relation holds when u(z) is replaced by |f(z)| whenever the left side of (1) is finite. It is easy to see that this last relation is equivalent to the relation:¹⁾

(2) boundary of
$$S_{z_0}^{(D)} \subset S_{z_0}^{(C-E)}$$
,

where the cluster set $S_{z_0}^{(D)}$ is the set of values approached sequencewise by f(z)in any neighborhood of z_0 and the boundary cluster set $S_{z_0}^{(C-E)}$ from C-E is the limit of the closure of $\bigcup_{z' \in (C-E)_{\pi}} S_{z'}^{(n)}$ as $r \to 0$, $(C-E)_r$ being that part of C-Ein $|z-z_0| < r$.

Later M. Tsuji [5] showed that in the special case that D is a domain and E is a closed set of logarithmic capacity zero, the exceptional values in $\Omega = S_{z_0}^{(D)} - S_{z_0}^{(C-E)}$, that is, the set of values in Ω which f(z) does not assume in some neighborhood of z_0 form a set of inner logarithmic capacity zero.

2. In this note we shall prove that this is true in the general case.

THEOREM. Let D be an open set in the z-plane, C its boundary, $E \subset C$ a set of inner harmonic measure zero with respect to D, z_0 a point of E in the closure of C - E, and f(z) a meromorphic function in D. Then every value of

Received May 30, 1955.

¹⁾ See [4], for instance.