A NOTE ON UNITS OF ALGEBRAIC NUMBER FIELDS

TOMIO KUBOTA

We shall prove in the present note a theorem on units of algebraic number fields, applying one of the strongest formulations, be Hasse [3], of Grunwald's existence theorem.

THEOREM. Let k be an algebraic number field, l a prime number, E_k the group of units of k and H a subgroup of E_k containing all l-th powers of elements of E_k . Assume that, for every $\eta \in H$, $k(\sqrt[l]{\eta})$ is always ramified over k whenever k contains an l-th root ζ_l (± 1) of unity. Then there are infinitely many cyclic extentions K/k of degree l with following properties:

- a) $N_{K/k}E_K = H$, where E_K is the group of units of K.
- b) if an ideal a of k is principal in K, then a is principal in k.

Proof. Denote by B the group of elements β of $k^{\times 1}$ such that (β) is an *l*-th power of some ideal in k, and denote by \mathfrak{C} the group of ideal classes of k. Let W be the group generated by H and all *l*-th powers of elements of k^{\times} , and let

(1)
$$B = B_0 \supset B_1 \supset \ldots \supset B_{s-1} \supset B_s = W$$

be a sequence of subgroups of B such that $(B_{i-1}: B_i) = l$ for every $i (1 \le i \le s)$. As preliminaries, we shall prove that, for every *i*, there is a prime ideal \mathfrak{p}_i of k which satisfies the following conditions: i) an element γ of B_{i-1} is an *l*-th power of some element in the \mathfrak{p}_i -adic field $k_{\mathfrak{p}_i}$ if and only if γ belongs to B_i . ii) The set of ideal classes of $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ contains an independent base of $\mathfrak{C}/\mathfrak{C}^l$. Assume first that $k \not \equiv \zeta_l$. Set $k_l = k(\zeta_l)$. Let $\Lambda = k_l(\sqrt[l]{B})$ be the field obtained from k_l by adjoining all *l*-th roots of elements of B. Then Λ contains no cyclic extention of degree *l* over *k*. For, if L/k is cyclic of degree *l*, and $L \subset \Lambda$, then $k_l L/k$ is abelian, $k_l L/k_l$ is cyclic of degree *l* and therefore $k_l L = k_l(\sqrt[l]{B})$, where

Received March 3, 1955.

¹⁾ We shall use this notation to stand for the multiplicative group of non-zero elements of a field.