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Let A be a ring with unit. If A is a left 4-module, the dimension of A
(notation: 1.dims A) is defined to be the least integer n for which there exists

an exact sequence
0—>Xp—> ... —>X—>A—>0

where the left 4-modules X, ..., X, are projective. If no such sequence

exists for any », then 1.dims A = . The left global dimension of A is
l.gl.dim A =sup l.dim, A

where A ranges over all left 4-modules. The condition 1. dim. A <nis equivalent
with Exti(A4, C)=0 for all left 4-modules C. The condition L.gl. dim A<n
is equivalent with Ext} = 0. Similar definitions and theorems hold for right
A-modules.

In the first section of this paper it is shown that the global dimension of
A is completely determined by the dimensions of the cyclic modules over 4,
i.e., the modules generated by a single element. In the next section the notion
of weak global dimension of A (notation: w.gl.dim 4) is introduced, and using
the previous result it is proven that if A is both left and right Noetherian, then
l.gl.dim 4 =w. gl.dim A =r. gl. dim A.

The rest of the paper, which is independent of the first two sections, is
devoted to a study of the global dimension of semi-primary rings. The prin-
cipal result here isthat l. dim, I'=1.gl.dim A =w. gl.dim A =r.gl.dim A =r.dima 7,
where I'= A/N, N being the radical of 4.

The definitions and notations employed in this paper are based on those
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1) Part of the work contained in this paper was done while the author was at the Uni-

versity of Chicago.

67



