ON SOME ASYMPTOTIC PROPERTIES OF POISSON PROCESS

TAKEYUKI HIDA

The Poisson process $X(t, \omega)$,¹⁾ ($\omega \in \Omega$, $0 \leq t < \infty$), as is well-known, is a temporally and spatially homogeneous Markoff process satisfying

(1)
$$X(0, \omega) = 0$$
 and $X(t, \omega) =$ integer ≥ 0 for every $\omega \in \Omega$,

(2)
$$Pr\{X(t, \omega) - X(t', \omega) \ge k\} = \sum_{i=k}^{r} \frac{\{\lambda(t-t')\}^i}{i!} e^{-\lambda(t-t')} \quad \text{for} \quad t > t',$$

where k is a non-negative integer and λ is a positive constant. In this note we consider the random variable $L_m(\omega)$ which denotes the length of *t*-interval such that $X(t, \omega) = m$ (m = 0, 1, 2, ...) and some of other properties concerning them.

§ 1. The known results on L_m .

Definition. We define $L_m(\omega)$, the function of m and ω , as follows,

$$L_m(\omega) = t_{m+1}(\omega) - t_m(\omega),$$

where

$$t_m(\omega) = \operatorname{Min} \{\tau; X(\tau, \omega) = m\}.$$

This $t_m(\omega)$ exists almost certainly by the right continuity property of Poisson process, and furthermore it is clear that $t_m(\omega)$ is measurable. Thus $L_m(\omega)$ becomes a non-negative random variable.

THEOREM 1. $L_0, L_1, \ldots, L_m, \ldots$ are mutually independent random variables with a common distribution function F(l), where

(3)
$$F(l) = \begin{cases} 1 - e^{-\lambda} & \text{if } l \ge 0, \\ 0 & otherwise. \end{cases}$$

Furthermore

(4)

 $E(L_m)^{(2)} = \frac{1}{\lambda}$

(5)
$$V(L_m)^{2} = \frac{1}{\lambda^2}$$
 $m = 0, 1, 2, ...$

This theorem was already suggested by P. Levy $[2]^{3}$ and a rigorous proof was

Received March 19, 1953.

¹⁾ ω denotes the probability parameter.

²⁾ $E(\ldots)$ and $V(\ldots)$ denote the mean and the variance respectively.

³⁾ Numbers in brackets refer to the bibliography at the end of this note.