ON SOME ASYMPTOTIC PROPERTIES OF POISSON PROCESS

TAKEYUKI HIDA

The Poisson process $X(t, \omega)$ ¹, $(\omega \in \Omega, 0 \le t < \infty)$, as is well-known, is a temporally and spatially homogeneous Markoff process satisfying

(1)
$$
X(0, \omega) = 0
$$
 and $X(t, \omega) =$ integer ≥ 0 for every $\omega \in \Omega$,

(2)
$$
Pr{X(t, \omega) - X(t', \omega) \geq k} = \sum_{i=k}^{\infty} \frac{\{\lambda(t - t')\}^t}{i!} e^{-\lambda(t - t')} \text{ for } t > t',
$$

where *k* is a non-negative integer and λ is a positive constant. In this note we consider the random variable $L_m(\omega)$ which denotes the length of *t*-interval such that $X(t, \omega) = m$ ($m = 0, 1, 2, ...$) and some of other properties concerning them.

\S 1. The known results on L_m .

Definition. We define $L_m(\omega)$, the function of m and ω , as follows,

$$
f_{\rm{max}}
$$

$$
t_m(\omega) = \operatorname{Min} \{\tau \, ; \, X(\tau, \omega) = m\}.
$$

 $L_m(\omega) = t_{m+1}(\omega) - t_m(\omega)$,

This $t_m(\omega)$ exists almost certainly by the right continuity property of Poisson process, and furthermore it is clear that $t_m(\omega)$ is measurable. Thus $L_m(\omega)$ be comes a non-negative random variable.

THEOREM 1. $L_0, L_1, \ldots, L_m, \ldots$ are mutually independent random vari*ables with a common distribution function F(l), ivhere*

(3)
$$
F(l) = \begin{cases} 1 - e^{-\lambda l} & \text{if } l \ge 0, \\ 0 & \text{otherwise.} \end{cases}
$$

Furthermore

(4) $E(L_m)^{2)} = \frac{1}{4}$

ivhere

(5)
$$
V(L_m)^{2)} = \frac{1}{\lambda^2} \qquad m = 0, 1, 2, ...
$$

This theorem was already suggested by P. Levy $[2]^3$ and a rigorous proof was

Received March 19, 1953.

^{1}} *ω* **denotes the probability parameter.**

 Z^2 $E(\ldots)$ and $V(\ldots)$ denote the mean and the variance respectively.

³ > Numbers in brackets refer to the bibliography at the end of this note.