UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS II

SEIZÔ ITÔ

§0. Introduction. In his preceding paper [2], the author determined the types of irreducible unitary representations and cyclic unitary representations of the group of all euclidean motions in 2-space E^2 . The purpose of the present paper is to determine the types of irreducible unitary representations and cyclic ones of the group of all euclidean motions in *n*-space E^n for $n \ge 3$.^{1),2)} In this paper, we shall make use of the results of the preceding paper [2], but notations are independent of those in [2].

§1. Preliminaries and main theorems. Let G be the group of all euclidean motions in *n*-space E^n . Then G has a compact subgroup $K \cong SO(n)$ and a normal subgroup V isomorphic to the vector group R^n , and

(1.1)
$$\begin{cases} \mathbf{G} = \mathbf{V} \cdot \mathbf{K}, \quad \mathbf{V} \cap \mathbf{K} = \{e\} \quad (e = \text{the identity of } \mathbf{G}) \\ \mathbf{G}/\mathbf{V} \cong \mathbf{K}. \end{cases}$$

Let X be the character group of V, and χ_0 be the identity of X; then $X \cong R^n$. Hereafter g, g', ... denote elements of G, especially a, b, c, ... of K, x, y, ... of V; and χ, χ', \ldots elements of X. (χ, x) denotes the value of character χ at $x \in V$. We denote by M_a the orthogonal matrix which realize the element $a \in K$ and by M_a^* its conjugate matrix, and define that $M_a x$ means to operate M_a to x as a vector in R^n while ax and xa mean the multiplications as elements of the group G. We shall denote briefly χ_a instead of $M_a^* \chi$. Then, if

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $\chi = (\chi_1, \ldots, \chi_n)$ and $M_a = \begin{pmatrix} a_{11} \ldots a_{1n} \\ \vdots \\ a_{n1} \ldots a_{nn} \end{pmatrix}$,

Received August 12, 1952.

¹⁾ The author wrote in [2] that it seemed to be difficult to solve such problem for $n \ge 3$. But he could solve this problem after he finished the proof-reading of the paper [2].

²⁾ Prof. G. W. Mackey kindly informed to the author that the result of [2] was inculuded in the result of his paper [3] which the author had overlooked. Recently more general cases have been treated in [4] and [5]. However, the results of the papers [3], [4] and [5] seem to be not so explicit as the result of our present paper.