ON THE BEHAVIOR OF AN ANALYTIC FUNCTION ABOUT AN ISOLATED BOUNDARY POINT

MAKOTO OHTSUKA*

Introduction. Let *D* be an open set in the 2-plane, *C* its boundary, *z⁰* a point on *C*, and $f(z)$ a one-valued meromorphic function in *D*. Given a set $E \subset D + C$, we denote the intersection of *E* with $G_r = \{0 < |z - z_0| < r\}$ by E_r , and the set of values $\{f(z) \, ; \, z \in D_r\}$ by $f(D_r)$. The *cluster set* $S^{(D)}_{z_0}$ of $f(z)$ at *z*₀ in *D* is defined by $\bigcap [f(D_r)]^a$, where \bigcap ⁿ² denotes the closure of the set in [], and the *range of values* $R_{z_0}^{(D)}$ is defined by $\bigcap_{r} f(D_r)$. Further the cluster set $S_{z_0}^{(E)}$ on *E* is defined by $\bigcap_{r} \bigcup_{z \in F_r} S_z^{(D)} \big]$ ^{*Z*}, where $S_z^{(D)}$ at an inner point *z* is put equal to $f(z)$. In the *theory of cluster sets* relations between $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$, $R_{z_0}^{(D)}$ are ϵ ϵ . In the set of the following two principal theorems under the sets relations ϵ S⁵, M₁, M₁ the assumption that z_0 is non-isolated: that z_0 is non-isolated to the following theorems under the following theorems under \mathbf{r}

(I) (Brelot²⁾), $(S_{z_0}^{(D)})^b \subset S_{z_0}^{(C)}$, wher $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ denotes the boundary of the set

(II) (Kunugui [5]). Each component of $S_{z_0}^{(D)} - S_{z_0}^{(C)}$, with two possible exceptions, is contained in $R_{z_0}^{(D)}$, provided that D is a domain.³⁾

It is always assumed that z_0 is *non-isolated* in these theorems, and the case it z_0 is isolated is left to the well-known Picard's theorem.

Above the cluster sets are defined for a function which takes values in a plane. However, the definitions can be generalized to a function, which is de--
fined in a plane domain and takes values on an *obstroct Riemonn surfoce*, and fined in a plane domain and takes values on an *abstract Riemann surface,* and

- * This work was done by the writer as a fellow of the Yukawa Foundation of Osaka University.
- γ for various results and literatures, cf. [7].
- 2 See [2], Theorem in §6. The form of Brelot's theorem is different from (1), but the
- Equivalency is proved as usual. Cf. [6], for instance.
³) This theorem can be proved also in the case where *D* is any open set as follows : Suppose that there exists a component Σ of $S_{\tilde{z}_0}^* - S_{\tilde{z}_0}^*$, at least three points of which do not belong to $R^{(D)}_{z_0}$. Let w_0 be such an exceptional value. Since $w_0 \in S^{(D)}_{z_0}$, we can choose $\{z_n\}$, $z_n \rightarrow z_0$, such that $f(z_n) \rightarrow w_0$. Among the inverse images in *D* of the segments $\{f(z_n)w_0\}$ in Ω , we can find an inverse image *l* in *D* terminating at z_0 , $f(z)$ has a limit $w_1 \in \Omega$ as $z \to z_0$ along *t*. Let D_1 be the component of *D* which contains *t*, and *C_i* its boundary. Then $S_{z_0}^{(p)}$ contains w_1 , and $S_{z_0}^{(p)} \supset S_{z_0}^{(p)}$, $S_{z_0}^{(p)} \supset S_{z_0}^{(p)}$, $R_{z_$ The component Ω_1 , which contains w_1 , of $S_{z_0}^{(D_1)} - S_{z_0}^{(C_1)}$ includes Ω by (I). Hence does not contain at least three values in Ω_1 . This is contrary to (II).

Received November 7, 1951.