ON THE BEHAVIOR OF AN ANALYTIC FUNCTION ABOUT AN ISOLATED BOUNDARY POINT

MAKOTO OHTSUKA*

Introduction. Let D be an open set in the z-plane, C its boundary, z_0 a point on C, and f(z) a one-valued meromorphic function in D. Given a set $E \subset D + C$, we denote the intersection of E with $G_r = \{0 < |z - z_0| < r\}$ by E_r , and the set of values $\{f(z); z \in D_r\}$ by $f(D_r)$. The cluster set $S_{z_0}^{(D)}$ of f(z) at z_0 in D is defined by $\bigcap_r [f(D_r)]^a$, where $[]^a$ denotes the closure of the set in [], and the range of values $R_{z_0}^{(D)}$ is defined by $\bigcap_r f(D_r)$. Further the cluster set $S_{z_0}^{(E)}$ on E is defined by $\bigcap_r [\bigcup_{z \in F_r} S_z^{(D)}]^a$, where $S_z^{(D)}$ at an inner point z is put equal to f(z). In the theory of cluster sets relations between $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$, $R_{z_0}^{(D)}$ are pursued chiefly.¹¹ Here we refer to the following two principal theorems under the assumption that z_0 is non-isolated:

(I) (Brelot²⁾). $(S_{z_0}^{(D)})^b \subset S_{z_0}^{(C)}$, where ()^b denotes the boundary of the set in ().

(II) (Kunugui [5]). Each component of $S_{z_0}^{(D)} - S_{z_0}^{(C)}$, with two possible exceptions, is contained in $R_{z_0}^{(D)}$, provided that D is a domain.³⁾

It is always assumed that z_0 is *non-isolated* in these theorems, and the case when z_0 is isolated is left to the well-known Picard's theorem.

Above the cluster sets are defined for a function which takes values in a plane. However, the definitions can be generalized to a function, which is defined in a plane domain and takes values on an *abstract Riemann surface*, and

- * This work was done by the writer as a fellow of the Yukawa Foundation of Osaka University.
- ¹⁾ For various results and literatures, cf. [7].
- ²⁾ See [2], Theorem in §6. The form of Brelot's theorem is different from (I), but the equivalency is proved as usual. Cf. [6], for instance.
- ³⁾ This theorem can be proved also in the case where D is any open set as follows: Suppose that there exists a component Ω of $S_{z_0}^{(D)} - S_{z_0}^{(C)}$, at least three points of which do not belong to $R_{z_0}^{(D)}$. Let w_0 be such an exceptional value. Since $w_0 \in S_{z_0}^{(D)}$, we can choose $\{z_n\}, z_n \to z_0$, such that $f(z_n) \to w_0$. Among the inverse images in D of the segments $\{\overline{f(z_n)w_0}\}$ in Ω , we can find an inverse image l in D terminating at z_0 . f(z) has a limit $w_1 \in \Omega$ as $z \to z_0$ along l. Let D_1 be the component of D which contains l, and C_1 its boundary. Then $S_{z_0}^{(D_1)}$ contains w_1 , and $S_{z_0}^{(D)} \supset S_{z_0}^{(D_1)}$, $S_{z_0}^{(C)} \supset S_{z_0}^{(C_1)}$, $R_{z_0}^{(D)} \supset R_{z_0}^{(D_1)}$. The component Ω_1 , which contains w_1 , of $S_{z_0}^{(D_1)} - S_{z_0}^{(C_1)}$ includes Ω by (I). Hence $R_{z_0}^{(D_1)}$ does not contain at least three values in Ω_1 . This is contrary to (II).

Received November 7, 1951.