NOTE ON A-GROUPS

NOBORU ITÔ

Let us consider soluble groups whose Sylow subgroups are all abelian. Such groups we call A-groups, following P. Hall. A-groups were investigated thoroughly by P. Hall and D. R. Taunt from the view point of the structure theory.¹⁾ In this note, we want to give some remarks concerning representation theoretical properties of A-groups.

§ 1. Definition. A group \mathfrak{G} is called an *M*-group if all its irreducible representations are similar to those of monomial forms.

PROPOSITION 1. Every A-group is an M-group.

Proof. Let \mathfrak{G} be an A-group and let \mathfrak{Z} be an irreducible representation of \mathfrak{G} . Obviously the A-property is hereditary to subgroups and factor groups. Therefore, applying the induction argument with respect to the order of \mathfrak{G} , we see that we have only to consider faithful, primitive irreducible representations of \mathfrak{G} . Let $\mathfrak{Z} = \mathfrak{G}$ be such a one. Let \mathfrak{N} be the radical, that is, the largest nilpotent normal subgroup of \mathfrak{G} . Since \mathfrak{G} is an A-group, the radical \mathfrak{N} is abelian. Therefore by a theorem of H. Blichfeld,²⁾ \mathfrak{N} must coincide with the centre of \mathfrak{G} . If $\mathfrak{G} = \mathfrak{N}$, the assertion is trivial. If $\mathfrak{G} \neq \mathfrak{N}$, let \mathfrak{N}_1 be a normal subgroup of \mathfrak{G} , which is minimal over \mathfrak{N} . Then obviously \mathfrak{N}_1 is nilpotent and therefore $\mathfrak{N}_1 = \mathfrak{N}$ which is a contradiction. Q.E.D.

Imposing some strong restriction on (8, M. Tazawa proved the proposition 1.³⁾

The M-property is not always hereditary to subgroups. First we remark the following well known fact:

(A) Let us consider a matrix group \mathfrak{M} whose character is denoted by χ . Then \mathfrak{M} is irreducible if and only if $\sum \chi \bar{\chi} =$ the order of \mathfrak{M} .

Example. Let \mathfrak{G} be the hyperoctahedral group of degree 4 (and of order 2^4 . 4!). Then \mathfrak{G} is irreducible, which is easily verified applying (A). Let

Received September 11, 1951.

P. Hall, The construction of soluble groups. J. Reine Angew. Math. 182, 206-214 (1940).
D. R. Taunt, On A-groups. Proc. Cambridge Philos. Soc. 45, 24-42 (1949).
The latter is not yet accessible to me.

²⁾ H. Blichfeld, Finite Collineation Groups. Chicago (1917).

³⁾ M. Tazawa, Über die monomial darstellbaren endlichen Substitutionsgruppen. Proc. Acad. Jap. 10, 397-398 (1934).