ON THE DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES

YÛSAKU KAWAHARA

Introduction. In the book "Foundations of algebraic geometry"¹⁾ A. Weil proposed the following problem; does every differential form of the first kind on a complete variety U determine on every subvariety V of U a differential form of the first kind? This problem was solved affirmatively by S. Koizumi when U is a complete variety without multiple point.²⁾ In this note we answer this problem in affirmative in the case where V is a simple subvariety of a complete variety U (in §1). When the characteristic is 0 we may extend our result to a more general case but this does not hold for the case characteristic $p \neq 0$ (in §2).

I express my hearty thanks to Prof. Y. Akizuki and Mr. S. Koizumi for their useful remarks.

§1. Let $K = k(x_1, \ldots, x_N) = k(x)$ be a field, generated over a field k by a set of quantities (x), the class \mathfrak{P} of equivalent (n-1)-dimensional valuations for K/k is called a prime divisor in the sense of Zariski,³⁾ n being the dimension of K over k, and its normalized valuation with rational integers as the value group is denoted by $\nu_{\mathfrak{P}}$. Let F(x, dx) be a differential form belonging to the extension k(x) of k. We say that F(x, dx) is finite at \mathfrak{P} if F(x, dx) is of the form

$$F(x, dx) = \sum z_{\alpha\beta} \dots dy_{\alpha} dy_{\beta} \dots ,$$

where $\nu_{\mathfrak{P}}(z_{\alpha\beta}...) \ge 0$, $\nu_{\mathfrak{P}}(y_{\alpha}) \ge 0$, $\nu_{\mathfrak{P}}(y_{\beta}) \ge 0$, ...

THEOREM 1. Let \mathbf{U}^n be a complete variety and k a field of definition of \mathbf{U}^n which is perfect. Let \mathbf{P} be a generic point of \mathbf{U}^n over k. Then, for every differential form ω on \mathbf{U} defined over k, $\omega(\mathbf{P})$ is of the first kind if and only if it is finite at every prime divisor of $k(\mathbf{P})$.

Proof. Sufficiency. Let (y) be a set of quantities such that $k(\mathbf{P}) = k(y)$ and let P' be a simple point of the locus V'' of (y) over k. If P^* is a generic

Received June 19, 1951.

¹⁾ We refer this book by F in this note.

²⁾ S. Koizumi, On the differential forms of the first kind on algebraic varieties. I. Journal of the Mathematical Society of Japan, vol. 1 (1949). II. vol. 2 (1951).

³⁾ See O. Zariski, *The reduction of the singularities of an algebraic surface*. Annals of Math. vol. 40 (1939).