SOME THEOREMS ON OPEN RIEMANN SURFACES

MASATSUGU TSUJI

1

Let F be an open Riemann surface spread over the z-plane. We say that F is of positive or null boundary, according as there exists a Green's function on F or not. Let u(z) be a harmonic function on F and

$$D(u) = \iint_{F} \left(\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right) dx dy \qquad (z = x + iy)$$

be its Dirichlet integral. As R. Nevanlinna¹⁾ proved, if F is of null boundary, there exists no one-valued non-constant harmonic function on F, whose Dirichlet integral is finite. This Nevanlinna's theorem was proved very simply by Kuroda.²⁾ By this mehod, we will prove

THEOREM 1. Let F be an open Riemann surface with null boundary and Δ be a non-compact domain on F, whose houndary Λ consists of (compact or noncompact) analytic curves. Let u(z) be a one-valued harmonic function in Δ , such that u(z) = 0 on Λ and its Dirichlet integral in Δ

$$D(u) = \iint_{\Delta} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right) dx dy$$

is finite. Then $u(z) \equiv 0$.

This theorem was proved by R. Nevanlinna³⁾ under the condition that u(z) is harmonic outside a compact domain F_0 and its Dirichlet integral in $F-F_0$ is finite.

Received June 18, 1951.

¹) (a) R. Nevanlinna: Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit. Annales Acad. Sci. Fenn. Series A, Mathematica-Physica 1 (1941).
(b) Über das Anwachsen des Dirichletintegrals einer analytischen Funktion auf einer offenen Riemannschen Fläche. Annales Acad. Sci. Fenn. Series A, Mathematica-Physica 45 (1948).

²⁾ T. Kuroda; Some remarks on an open Riemann surface. To appear in the Tohoku Math. Journ.

³⁾ R. Nevanlinna, I.c. ¹⁾ (a).