A REMARK ON FINITELY GENERATED MODULES

TADASI NAKAYAMA

Theorem 5 of Azumaya's recent article¹ can be formulated in the following generalized form:

I. Let R be a ring. Let m be a finitely generated right-module of R such that mR=m. Assume that $m=u_1r+u_2r+\ldots+u_mr$ for every generating system u_1, u_2, \ldots, u_m of m and for every maximal right-ideal r of R. Then m=0.

For the proof, we first consider the case where R possesses a unit element 1. Then the assertion can be proved quite similarly as in Azumaya, l. c. Let namely u_1, u_2, \ldots, u_m be any finite generating system of $m; m = u_1R + u_2R + \ldots + u_mR$. Let r_0 be the right-ideal of R consisting of all elements x of R such that

$$u_1x \in u_2R + \ldots + u_mR.$$

Suppose $r_0 \neq R$. There exists a maximal right-ideal r which contains r_0 , and we have $\mathfrak{m} = u_1r + u_2r + \ldots + u_mr$, whence $= u_1r + u_2R + \ldots + u_mR$ much the more, by our assumption. There is an element a in r such that $1 - a \in r_0 \subseteq r$. which is a contradiction. Hence necessarily $r_0 = R$ and $\mathfrak{m} = u_2R + \ldots + u_mR$. Now the assertion can be proved by an induction with respect to the minimal number of generating elements.

Let next R be general. Let R^* be the ring which is as module a direct sum of R and the ring of rational integers and in which 1x=x1=x ($x \in R$). If r^* is a maximal right-ideal of R^* , then $r^* \cap R$ is either R or a maximal right-ideal of R. Thus $m=u_1r^*+u_2r^*+\ldots+u_mr^*$, much the more, and the assertion can be reduced to the above case.

It is perhaps of interest to observe that from this generalization Jacobson's theorem² may be derived:

Received May 15, 1951.

² N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), Theorem 10; the present formulation is in 1), l. c.

¹⁾ G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951).