ON A FORMULA CONCERNING STOCHASTIC DIFFERENTIALS

KIYOSI ITÔ

In his previous paper $[1]^{1}$ the author has stated a formula² concering stochastic differentials with the outline of the proof. The aim of this paper is to show this formula in details in a little more general form (Theorem 6).

1. Definitions. Throughout this paper we assume that all stochastic processes³⁾ $\xi(t, \omega), \eta(t, \omega), a(t, \omega), b(t, \omega)$, etc. are measurable in variables t and ω . A system of r one-dimensional Brownian motions independent of each other is called an r-dimensional Brownian motion.

Given two system of stochastic processes:

(1.1)
$$\xi = \{\xi_{\lambda}(t, \omega), \lambda \in A\}, \quad \eta = \{\eta_{\mu}(t, \omega), \mu \in M\}.$$

We say that ξ has the property α with regard to η in $u \leq t \leq v$, if, for any t, the following two systems of random variables are independent of one another:

(1.2)
$$\begin{cases} \varphi_t = \{\xi_{\lambda}(\tau, \omega), \lambda \in \Lambda, \eta_{\mu}(\tau, \omega), \mu \in M, u \leq \tau \leq t\} \\ \varphi_t = \{\eta_{\mu}(\sigma, \omega) - \eta_{\mu}(t, \omega), \mu \in M, t \leq \sigma \leq v\}. \end{cases}$$

Now we shall state an outline⁴⁾ of a stochastic integral of the form :

(1.3)
$$\int_{s}^{t} \hat{\varsigma}(\tau, \omega) d\beta(\tau, \omega), \quad u \leq s \leq t \leq v, \quad \omega \in \mathcal{Q}_{1},$$

where $\beta(t, \omega)$ is a one-dimensional Brownian motion and Ω_1 is a measurable subset of Ω . We shall set the two conditions on ξ ;

(C.1) $\xi(t, \omega)$ has the property α concerning $\beta(t, \omega)$ in $u \leq t \leq v$,

(C.2)
$$\int_{u}^{v} \xi(\tau, \omega)^{2} d\tau \text{ for almost all } \omega \in \Omega_{1}.$$

Received April 16, 1951.

¹⁾ The number in [] refers to the Reference at the end of this paper.

²⁾ Theorem 1.1 in [1].

³⁾ In the analytical theory of probability any stochastic process is expressed as a function of the time parameter t and the probability parameter ω which runs over a probability space $\Omega(P)$, P being the probability distribution.

⁴ Cf. [2] concerning the details.