K. Sato Nagoya Math. J. Vol. 48 (1972), 129–145

CORES OF POTENTIAL OPERATORS FOR PROCESSES WITH STATIONARY INDEPENDENT INCREMENTS

KEN-ITI SATO

1. Introduction.

Let $X_t(\omega)$ be a stochastic process with stationary independent increments on the N-dimensional Euclidean space \mathbb{R}^N , right continuous in $t \geq 0$ and starting at the origin. Let $C_0(\mathbb{R}^N)$ be the Banach space of real-valued continuous functions on \mathbb{R}^N vanishing at infinity with norm $||f|| = \sup_{x \in T} |f(x)|$. The process induces a transition semigroup of operators T_t^x on $C_0(\mathbb{R}^N)$:

$$T_t f(x) = E f(x + X_t) \; .$$

The semigroup is strongly continuous. Let A be the infinitesimal generator of the semigroup, and J_{λ} , $\lambda > 0$, be the resolvent. The potential operator V in Yosida's sense [7] is defined by $Vf = \lim_{\lambda \to 0^+} J_{\lambda}f$ (limit in the strong topology) if and only if the set of f for which the limit exists is dense. If V is defined, then A is one-to-one, $V = -A^{-1}$, and hence V is a closed operator (see [7] or [4]). It is proved in [4] that the semigroup T_t admits a potential operator except if $X_t = 0$ with probability one. A subset \mathfrak{M} of $\mathfrak{D}(V)$ is called a core of V, if for each $f \in \mathfrak{D}(V)$ there is a sequence $\{f_n\}$ in \mathfrak{M} such that $f_n \to f$ and $Vf_n \to Vf$ strongly. The purpose of this paper is to describe cores of the potential operator V. An importance of finding cores of V lies in the fact that the operator Vconsidered only on a core is enough to determine the semigroup. That is, if two strongly continuous semigroups $T_t^{(1)}$ and $T_t^{(2)}$ have potential operators $V^{(1)}$ and $V^{(2)}$, respectively, and if $V^{(1)}$ and $V^{(2)}$ coincide on a common core, then $T_t^{(1)}$ and $T_t^{(2)}$ are identical.

Let Σ be the collection of points x such that for each open neigh-

Received April 27, 1972.