A. Takaku. Nagoya Math. J. Vol. 44 (1971), 51–55

UNITS OF REAL QUADRATIC FIELDS

AKIRA TAKAKU

1. Let D be a positive square-free integer. Throughout this note we shall use the following notations;

d = d(D): the discriminant of $Q(\sqrt{D})$,

 t_0 , u_0 : the least positive solution of Pell's equation $t^2 - du^2 = 4$,

 $\varepsilon_D = (t_0 + u_0 \sqrt{d})/2.$

In this note we estimate ε_D . At first (in lemma) we prove that for $Q(\sqrt{D})$ there exist integers \checkmark , m and \varDelta (= square-free) such that D is one of three types

$$D = \Delta \left(m^2 \Delta \pm \frac{4}{2^{\delta}} \right) / \ell^2, \qquad (\delta = 0, 1 \text{ or } 2)$$

where $2 \not\mid m$, $2 \not\mid \Delta$ for $\delta = 0$ and $2 \not\mid \Delta$ for $\delta = 1$. Therefore we consider the above three types.

As for the estimate of ε_D Hua [1] proved

(1)
$$\log \varepsilon_D < \sqrt{d} \left(\frac{1}{2} \log d + 1\right).$$

Here we estimate ε_D in accordance with the above three types.

THEOREM. We have

(2)
$$\varepsilon_D < 2^{\delta} \ell^2 D$$
,

where $D = \Delta (m^2 \Delta + 4/2^{\delta})/\ell^2$ and $\delta = 0$, 1 or 2. Δ is a square-free integer > 0, m and ℓ are integers. In particular 2+m, 2+ Δ for $\delta = 0$ and 2+ Δ for $\delta = 1$. More precisely when $\delta = 1$ we have

(3)
$$\varepsilon_{D} < \begin{cases} 2 \swarrow^{2} D & (\varDelta = 1), \\ \swarrow^{2} D & (\varDelta \ge 2), \end{cases}$$

Received January 25, 1971