Goro Shimura Nagoya Math. J. Vol. 43 (1971), 199–208

ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION AS FACTORS OF THE JACOBIANS OF MODULAR FUNCTION FIELDS

GORO SHIMURA

1. As Hecke showed, every *L*-function of an imaginary quadratic field K with a Grössen-character λ is the Mellin transform of a cusp form f(z) belonging to a certain congruence subgroup Γ of $SL_2(\mathbb{Z})$. We can normalize λ so that

$$\lambda((\alpha)) = \alpha^{\iota}$$
 for $\alpha \in K$, $\alpha \equiv 1 \mod^{\star} \mathfrak{c}$

with a positive integer ν , where c is the conductor of λ , and mod[×] c means the multiplicative congruence modulo c. Then f(z) is of weight $\nu + 1$, i.e.,

$$f((az+b)/(cz+d)) = f(z)(cz+d)^{\nu+1} \text{ for } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma,$$

and Γ is given by

$$\Gamma = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \, \middle| \, a \equiv d \equiv 1, \ c \equiv 0 \mod (D \cdot N(\mathfrak{c})) \right\},$$

where -D is the discriminant of K. If $\nu = 1$, f(z)dz is a differential form of the first kind on the compactification $(H/\Gamma)^*$ of the quotient H/Γ , where H denotes the upper half complex plane. Denote by $Jac(H/\Gamma)$ the jacobian variety of $(H/\Gamma)^*$, and identify the tangent space of $Jac(H/\Gamma)$ at the origin with the space of all differential forms of the first kind on $(H/\Gamma)^*$. Let Abe the smallest abelian subvariety of $Jac(H/\Gamma)$ that has f(z)dz as a tangent at the origin. Then the first main result of this paper can be stated as follows:

The abelian variety A is a product of copies of an elliptic curve whose endomorphism algebra is isomorphic to K.

Hecke [3] proved this fact in the case where $K = Q(\sqrt{-q})$ with a prime q > 3, $\equiv 3 \mod (4)$ and $c = (\sqrt{-q})$. In the general case, he showed only that

Received January 16, 1971.