ON A CHARACTERIZATION OF THE FIRST RAMIFICATION GROUP AS THE VERTEX OF THE RING OF INTEGERS

YOSHIMASA MIYATA

1. Introduction.

Let k be a \mathfrak{p} -adic number field and \mathfrak{o} be the ring of all integers in k. Moreover, let K/k be a finite Galois extension with the Galois group G = G(K/k). Then the ring \mathfrak{D} of all integers in K is an $\mathfrak{o}[G]$ -module. In this paper we shall give a characterization of the first ramification group G_1 of the extension K/k as the vertex of \mathfrak{D} which is defined below.

To define the vertex of \mathfrak{D} , we remember the vertex theory ([1], [2]). Let G be an arbitrary finite group and M be an $\mathfrak{o}[G]$ -module, where $\mathfrak{o}[G]$ is the group algebra of G over \mathfrak{o} . Let U be a subgroup of G. Then M is said to be U-projective if there is an $\mathfrak{o}[U]$ -module N such that M is isomorphic to a component of the induced $\mathfrak{o}[G]$ -module $\mathfrak{o}[\mathfrak{D}] \otimes_{\mathfrak{o}[U]} N$. If M is an indecomposable $\mathfrak{o}[G]$ -module, then there exists a subgroup V of G, such that

(i) M is V-projective and

(ii) if W is any subgroup of G, such that M is W-projective, then for some element g of G

$$gVg^{-1}\subset W$$
.

We call such V, that is uniquely determined up to conjugate subgroups in G, a vertex of M.

Now let K/k be the finite Galois extension with the Galois group G, and $\mathfrak D$ the ring of all integers in K. Then, since $\mathfrak D$ is not always indecomposable as an $\mathfrak o[G]$ -module, we consider the decomposition of $\mathfrak D$ into indecomposable $\mathfrak o[G]$ -modules M_i

$$\mathfrak{O}=M_1\oplus\cdots\oplus M_l.$$

Received September 17, 1970. Revised October 28, 1970.