Masatoshi Yamauchi Nagoya Math. J. Vol. 43 (1971), 137-149

ON THE TRACE OF HECKE OPERATORS FOR CERTAIN MODULAR GROUPS

MASATOSHI YAMAUCHI

Introduction.

The trace of Hecke operators with respect to a unit group of an order in a quaternion algebra has been given in Eichler [1], [2] in the case when the order is of square-free level. The purpose of this note is to study the order of type (q_1, q_2, q_3) (see text 1.1), in the case, of cube-free level, and to give a formula for the trace of Hecke operators in the case $q_3 = 2$.

Notation.

Z, Q, R denote the ring of rational integers, the field of rational numbers, and the field of real numbers, respectively. Q_p denotes the *p*-adic closure of Q and Z_p the ring of integers in Q_p . R being a ring, $M_2(R)$ denotes the full matrix ring over R of degree 2.

1. The order of type (q_1, q_2, q_3)

1.1. Let A be a quaternion algebra over Q and $q_1^2 = d(A/Q)$ be its discriminant. For every prime number p, $A_p \bigotimes_Q Q_p$ is a division algebra over Q_p or $A_p \simeq M_2(Q_p)$ according as $p|q_1$ or p/q_1 . Let q_2 , q_3 be square-free positive integers such that $(q_i, q_j) = 1$ for $i \neq j$, $1 \leq i, j \leq 3$. We then define the order \mathfrak{D} of type (q_1, q_2, q_3) which satisfies the following properties:

- i) $\mathfrak{O}_p = \mathfrak{O} \bigotimes_{\mathbf{z}} \mathbf{Z}_p$ is a maximal order in A_p , if $p \not q_1 q_2 q_3$,
- ii) \mathfrak{D}_p is the unique maximal order in the division algebra A_p , if p/q_1 ,
- iii) $\mathfrak{D}_p \cong \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}_p) \mid c \equiv 0 \pmod{p} \right\}, \text{ if } p \mid q_2,$

iv)
$$\mathfrak{D}_p \cong \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in M_2(\mathbf{Z}_p) \, | \, c \equiv 0 \pmod{p^2} \right\}, \text{ if } p \, | \, q_3,$$

In this note we consider the order of type (q_1, q_2, q_3) exclusively.

Received August 27, 1970.

Revised November 18, 1970.