Bang-yen Chen Nagoya Math. J. Vol. 43 (1971), 117-125

SOME INTEGRAL FORMULAS FOR HYPER-SURFACES IN EUCLIDEAN SPACES

BANG-YEN CHEN

1. Introduction

Let M be an oriented hypersurface differentiably immersed in a Euclidean space of $n+1 \ge 3$ dimensions. The *r*-th mean curvature K_r of M at the point P of M is defined by the following equation:

(1)
$$\det(\delta_{ij} + ta_{ij}) = \sum_{r=0}^{n} \binom{n}{r} K_r t^r$$

where δ_{ij} denotes the Kronecker delta, $\binom{n}{r} = n!/r! (n-r)!$, and a_{ij} are the coefficients of the second fundamental form. Throughout this paper all Latin indices take the values $1, \dots, n$, Greek indices the values $1, \dots, n+1$, and we shall also follow the convention that repeated indices imply summation unless otherwise stated. Let p denote the oriented distance from a fixed point 0 in E^{n+1} to the tangent hyperplane of M at the point P, and dV denote the area element of M. Let e_1, \dots, e_n be an ordered orthonormal frame in the tangent space of the hypersurface M at the point P, and denote by x_i the scalar product of e_i and the position vector X of the point P with respect to the fixed point 0 in E^{n+1} . The main purpose of this paper is to establish the following theorems:

THEOREM 1. Let M be an oriented hypersurface with regular smooth boundary differentiably immersed in a Euclidean space E^{n+1} . Then we have

(2)
$$\int_{\mathcal{M}} p^{m-1} \mathbf{X} \cdot \nabla K_r dV + n \int_{\mathcal{M}} p^{m-1} (K_r - K_1 K_r p) dV + (m-1) \int_{\mathcal{M}} p^{m-2} K_r x_i x_j a_{ij} dV$$
$$= \int_{\partial \mathcal{M}} p^{m-1} K_r \mathbf{X} \cdot \mathbf{X} d\mathbf{X}, \qquad r = 0, 1, \cdots, n-1,$$

where *m* is any real number, ∇K_r is the gradient of K_r , ∂M is the boundary of *M* and *** denotes the star operator.

Received January 30, 1970.