Audrey Terras Nagoya Math. J. Vol. 42 (1971), 173–188

A GENERALIZATION OF EPSTEIN'S ZETA FUNCTION

AUDREY TERRAS*)

§0. Introduction.

Koecher defined in [3] the following zeta function associated with the matrix $S^{(n)}$ of a positive quadratic form and one complex variable ρ

(1)
$$Z_{n_1}(S,\rho) = \sum_A |{}^t ASA|^{-\rho}.$$

Here $n \ge n_1$, and the sum is over a complete set of representatives for the n by n_1 integral rank n_1 matrices $A^{(n,n_1)}$ with respect to the equivalence relation $A \sim B$ if A = BU for some unimodular matrix U. The unimodular group \mathfrak{U}_{n_1} is defined by $\mathfrak{U}_{n_1} = \{U^{(n_1)}: U \text{ integral}, n_1 \text{ by } n_1 \text{ with determinant } |U| = \pm 1\}$. We use the notation |S| = determinant of S and $S[A] = {}^tASA$ throughout. Superscripts in parentheses on matrices denote the number of rows and columns. Thus $A^{(n,n_1)}$ has n rows and n_1 columns.

Koecher shows in [3] that $Z_{n_1}(S, \rho)$ converges for $Re\rho > \frac{n}{2}$. But his proof of the analytic continuation and the functional equation,

(2)
$$R_{n_1}(S,\rho) = |S|^{\frac{-n_1}{2}} R_{n_1}\left(S^{-1}, \frac{n}{2} - \rho\right)$$

where
$$R_{n_1}(S,\rho) = \pi^{n_1 \left(\frac{n_1-1}{4}-\rho\right) \prod_{i=0}^{n_1-1}} \Gamma\left(\rho - \frac{i}{2}\right) Z_{n_1}(S,\rho),$$

has a gap. This is remedied neatly using an idea of Selberg. One can annihilate the trouble-making terms of the theta function with an appropriate differential operator. We outline these results in §1 because they do not appear in the literature.

Selberg has defined in [6] a zeta function associated with a positive matrix S and n-1 complex variables $\rho = (\rho_1, \rho_2, \dots, \rho_{n-1})$. This function can be seen to be essentially the same as

Received June 24, 1970.

^{*)} Partially supported by an N.S.F. Graduate Fellowship.