Y.K. Kwon, L. Sario, and J. Schiff Nagoya Math. J. Vol. 42 (1971), 95-108

BOUNDED ENERGY-FINITE SOLUTIONS OF $\Delta u = Pu$ ON A RIEMANNIAN MANIFOLD

Y.K. KWON, L. SARIO, AND J. SCHIFF

Introduction

1. The classification of Riemann surfaces with respect to the equation $\Delta u = Pu$ ($P \ge 0$, $P \ne 0$) was initiated by Ozawa [13] and further developed by L. Myrberg [8, 9], Royden [14], Nakai [10, 11], Sario-Nakai [15], Nakai-Sario [12], Glasner-Katz [3], and Kwon-Sario [7].

The objective of the present paper is to establish properties of bounded energy finite solutions of $\Delta u = Pu$ in terms of the *P*-harmonic boundary of a Riemannian manifold *R*. The occurrence of the *P*-singular point (Nakai-Sario [12]), at which all functions in the *P*-algebra vanish, necessitates delicate new arguments.

The P-algebra $M_P(R)$ is not, in general, uniformly dense in the space $B(R_P^*)$ of bounded continuous functions on the P-compactification R_P^* . However, we shall prove the following Urysohn-type theorem. Let K_0 , K_1 be any disjoint compact subsets of R_P^* with the P-singular point $s \in K_0$. Then there exists a function $f \in M_P(R)$ such that $0 \le f \le 1$ on R_P^* and $f | K_i = i$ (i = 0, 1).

Although the standard maximum-minimum principle does not hold, the following modification can be established. Let u be P-superharmonic and bounded from below on a Riemannian manifold R such that $\lim \inf u \ge 0$ at the P-harmonic boundary Δ_P . Then $u \ge 0$ on R. As a consequence, $|u| \le \limsup_{d_P} |u|$ for every bounded P-harmonic function u on R.

This maximum princip'e together with the orthogonal decomposition enables us to prove the existence of a positive linear operator

$$\pi: B_{s}(\mathcal{A}_{P}) \to PB(R)$$

Received April 20, 1970.

The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-70-G7, University of California, Los Angeles.