Hisasi Morikawa Nagoya Math. J. Vol. 41 (1971), 101–106

A NOTE ON HOLOMORPHIC VECTOR BUNDLES OVER COMPLEX TORI

HISASI MORIKAWA

1. Let $\omega: \mathbb{Z}^{2r} \to \mathbb{C}^r$ be an isomorphism of the free additive group of rank 2r into the complex vector *n*-space such that the quotient group $T = \mathbb{C}^r / \omega(\mathbb{Z}^{2r})$ is compact, i.e., T_{ω} is a complex torus.

We mean by a matric multiplier of rank *n* with respect to ω a family of complex holomorphic $n \times n$ -matrix functions $\{\mu_{\alpha}(z)\}_{\alpha \in \mathbb{Z}^{2r}}$ on \mathbb{C}^{r} such that

1)
$$\det \mu_{\alpha}(z) \neq 0 \quad (z \in C^{r}),$$

2) $\mu_{\alpha}(z)\mu_{\beta}(z+\omega(\alpha))=\mu_{\alpha+\beta}(z), \quad (\alpha,\beta\in \mathbb{Z}^{2r}).$

By virtue of the conditions 1) and 2) we may define an action of Z^{2r} on the product $C^r \times C^n$ as follows:

$$(z, u) \rightarrow (z + \omega(\alpha), v \mu_{\alpha}(z)), \quad (\alpha \in \mathbb{Z}^{2r}).$$

The quotient V_{μ} of $C^r \times C^n$ by this action of Z^{2r} is a holomorphic vector *n*-bundle over the complex torus T_{ω} , and conversely every holomorphic vector bundle over T_{ω} is constructed by this method with a matric multiplier, since holomorphic vector bundles over a vector space are always trivial.¹)

2. We shall recall the definition of *finite Heiseuberg groups* and their canonical representations.

Let G be an additive group of order n and of exponent d, and ζ be a primitive d-th root of unity. Let \hat{G} be the dual group of G defined by a pairing $(\hat{a}, a) \rightarrow \langle \hat{a}, a \rangle$ of $\hat{G} \times G$ into the multiplicative group $\{1, \zeta, \dots, \zeta^{a-1}\}$. We mean by the finite Heisenberg group H(G) associated with G the group consisting of triples $\{(\hat{a}, a, \zeta^{l}) | \hat{a} \in \hat{G}, a \in G, 0 \leq l \leq d-1\}$ with the composition law

$$(\hat{a}, a, \zeta^l) (\hat{b}, b, \zeta^h) = \langle \hat{a} + \hat{b}, a + b, \langle \hat{a}, b \rangle \zeta^{l+h} \rangle.$$

Received March 17, 1970.