M. Nagata Nagoya Math. J. Vol. 37 (1970), 191–196

ON SELF-INTERSECTION NUMBER OF A SECTION ON A RULED SURFACE

MASAYOSHI NAGATA

To Professor K. Ono for his sixtieth birthday

Let E be a non-singular projective curve of genus $g \ge 0$, P the projective line and let F be the surface $E \times P$. Then it is well known that a ruled surface F^* which is birational to F is biregular to a surface which is obtained by successive elementary transformations from F (for the notion of an elementary transformation, see [3]). The main purpose of the present article is to prove the following

THEOREM 1. For any such F^* , there is a section (i.e., an irreducible curve s on F such that (s, l) = 1 for a fibre l of F^*) such that its self-intersection number (s, s) is not greater than g.

In classifying ruled surface F^* , as was noted by Atiyah [1], it is important to know the minimum value of self-intersection numbers (s, s) of sections of $F^{*,1}$. Our Theorem 1 is important in the respect.

The following is a key to our proof of Theorem 1:

THEOREM 2. Let d be a non-negative rational integer. If Q_1, \dots, Q_{g+2d+1} are points²⁾ of F, then there is a positive divisor D of F such that (i) D goes through Q_1, \dots, Q_{g+2d+1} and (ii) D is linearly equivalent to $E \times P + \sum_{i=1}^{g+d} R_i \times P$ with a $P \in P$ and suitable $R_i \in E$.

In connection with this Theorem 2, we prove the following theorem too:

Received October 11, 1968

¹⁾ Atiyah proved that the minimum value is not greater than 2g-1 if g>0. On the other hand, it was remarked by M. Maruyama that there is an F (for every E) which carries only sections s such that $(s, s) \ge g$ (see [2]).

²⁾ In this theorem, these Q_i need not be ordinary points, namely, some of these Q_i may be infinitely near points of some ordinary points. For the definition of the term "go through" in such a case, see [3].