S. Iwasaki and H. Kimura Nagoya Math. J. Vol. 37 (1970), 25–32

ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE N AND ORDER 6n(n-1)

SHIRO IWASAKI AND HIROSHI KIMURA¹⁾

Dedicated to Professor K. Ono on his 60th birthday

The purpose of this paper is to prove the following result.

THEOREM. Let Ω be the set of symbols $1, 2, \dots, n$. Let \mathfrak{G} be a doubly transitive group on Ω of order 6n(n-1) not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of the set of symbols 1 and 2. Assume that \mathfrak{R} is cyclic and independent, i.e., $\mathfrak{R} \cap G^{-1}\mathfrak{R}G = 1$ or \mathfrak{R} for every element G of \mathfrak{G} . Then \mathfrak{G} is isomorphic to either PGL(2,7) or PSL(2,13).

We use the standard notation;

 $C_{\mathfrak{X}}(\mathfrak{T})$: the centralizer of a subset \mathfrak{T} in a group \mathfrak{X} $N_{\mathfrak{X}}(\mathfrak{T})$: the normalizer of \mathfrak{T} in \mathfrak{X} $\langle \cdots \rangle$: the subgroup generated by \cdots $|\mathfrak{T}|$: the number of elements in \mathfrak{T} $[\mathfrak{X}:\mathfrak{Y}]$: the index of a subgroup \mathfrak{Y} in \mathfrak{X} \mathfrak{T}^{a} : $G^{-1}\mathfrak{T}G$ where $G \in \mathfrak{X}$.

Proof of Theorem

1. Let \mathfrak{H} be the stabilizer of the symbol 1. \mathfrak{R} is of order 6 and it is generated by a permutation K whose cyclic structure has the form (1)(2) \cdots . Since \mathfrak{G} is doubly transitive on Ω , it contains an involution I with the cyclic structure $(1, 2) \cdots$ which is conjugate to K^3 . Then we have the following decomposition of \mathfrak{G} ;

Received November 18, 1968

¹⁾ This work was supported by The Sakkokai Foundation.