A CHARACTERIZATION OF THE ZASSENHAUS GROUPS

KOICHIRO HARADA

Introduction

A doubly transitive permutation group \mathfrak{G} on the set of symbols Ω is called a Zassenhaus group if \mathfrak{G} satisfies the following condition: the identity is the only element leaving three distinct symbols fixed.

The Zassenhaus groups were classified by H. Zassenhaus [14], W. Feit [3], N. Ito [7], and M. Suzuki [9]. There have been several characterizations of the Zassenhaus groups. Namely M. Suzuki [10] has proved that if a non abelian simple group \mathfrak{G} has a non-trivial partition then \mathfrak{G} is isomorphic with one of the groups $\operatorname{PSL}(2,q)$ or $\operatorname{Sz}(2^n)$. Since each of the groups $\operatorname{PSL}(2,q)$, $\operatorname{Sz}(2^n)$ has a non-trivial partition, a theorem of Suzuki characterizes them.

In this paper we shall characterize the Zassenhaus groups as permutation groups by a property of the centralizer of their involutions.

Let \mathfrak{G} be a finite permutation group on a set of n symbols $\Omega = \{1, 2, \dots n\}$. For every $i(0 \le i \le n)$, we define a subset \mathfrak{C}_i of \mathfrak{G} in the following way:

 $\mathbb{C}_i = \{G \in \mathfrak{G} \mid G \text{ leaves exactly } i \text{ distinct symbols fixed} \}.$

Clearly each \mathbb{G}_i is a union of some conjugate classes of \mathbb{G} . In particular $\mathbb{G}_n = \{1\}$. A subset \mathbb{G}_i may be empty for some i. We shall set a following condition:

 (c_i) there exists an involution $I^{(i)} \in \mathfrak{C}_i$ such that the centralizer $\mathfrak{C}_{\mathfrak{G}}(I^{(i)})$ of $I^{(i)}$ in \mathfrak{G} is contained in $\mathfrak{C}_i \cup \{1\}$.

It is easy to see that every conjugate element J of $I^{(i)}$ has the same property as $I^{(i)}$. As a matter of fact, the linear fractional groups PSL(2,q) and Suzuki's simple groups $Sz(2^m)$ satisfy one of the conditions (c_0) , (c_1) or

Received Nov. 14, 1967.