UPPER BOUNDS ON HOMOLOGICAL DIMENSIONS

B.L. OSOFSKY

The homological dimension of a module M_R is often related to the cardinality of a set of generators for M or for right ideals of R. In this note, upper bounds for this homological dimension are obtained in two situations.

In [8] Jensen has shown that, for any ring R whose finitely generated right ideals are countably related, if any right ideal of R is generated by \aleph_n elements, then the right global dimension of R exceeds the weak global dimension by at most n+1. In section 1 we show that the condition that finitely generated right ideals are countably related may be deleted, and Jensen's theorem will still hold.

In [3] Berstein showed that a direct limit of modules over a countable directed system has dimension at most one more than the supremum of the dimensions of the modules. This is also an immediate consequence of Roos [14], Theorem 1. In section 2 we show that a direct limit of modules over a directed system of cardinality \aleph_n has dimension at most n+1 more than the supremum of the dimensions of the modules. Balcerzyk showed this for a directed union in [2].

All rings R will have identity 1; all modules will be unital right R-modules. For a module M, $hd_R(M)$ (or hd(M) if no confusion arises) will denote the homological dimension of M. gl. d(R) will denote the right global dimension of R and w. gl. d(R) its weak global dimension. A basic tool for calculating upper bounds on homological dimensions is the following proposition of Auslander.

PROPOSITION 0.1. Let \mathscr{J} be a non-empty well-ordered set, M a right Rmodule, $\{N_i | i \in \mathscr{J}\}$ a family of submodules of M such that $N_i \subseteq N_j$ for $i \leq j$.

If $M = \bigcup_{i \in \mathscr{J}} N_i$ and $hd_R(N_i | \bigcup_{j < i} N_j) \leq n$ for all $i \in \mathscr{J}$, then $hd_R(M) \leq n$.

Proof. This is proposition 3 of [1].

Received September 18, 1967.

This paper was written while the author held a National Science Foundation Postdoctoral Fellowship and a Rutgers University Research Council Faculty Fellowship.