A ring \(R \) (with identity) is semi-primary if it contains a nilpotent ideal \(N \) with \(R/N \) semi-simple with minimum condition. \(R \) is called a left \(QF-3 \) ring if it contains a faithful projective injective left ideal. If \(R \) is semi-primary and left \(QF-3 \), then there is a faithful projective injective left ideal of \(R \) which is a direct summand of every faithful left \(R \)-module \([5]\), in agreement with the definition of \(QF-3 \) algebra given by R.M. Thrall \([6]\).

Let \(Q(M) \) denote the injective envelope of a (left) \(R \)-module \(M \). We call \(R \) left \(QF-3^+ \) if \(Q(R) \) is projective. J.P. Jans showed that among rings with minimum condition on left ideals, the classes of \(QF-3 \) and \(QF-3^+ \) rings coincide \([5]\).

In this note we determine the class of semi-primary rings in which the notions of \(QF-3 \) and \(QF-3^+ \) coincide. Next, we show that the characterization of \(QF-3^+ \) rings given by Wu, Mochizuki, and Jans \([7]\) for rings with the property that direct products of projective modules are projective, can be used to characterize semi-primary \(QF-3 \) rings. Finally, we give some results relating the notions of torsionless and torsion-free modules as defined by H. Bass \([1]\) and A.W. Goldie \([3]\). In particular we show that if \(R \) is semi-primary, these notions coincide if and only if \(R \) is left \(QF-3 \) and has zero left singular ideal.

S. Eilenberg has given the following characterization of projective modules for semi-primary rings \([2]\).

Proposition 1. If \(R \) is semi-primary and \(P \) is a projective \(R \)-module, then \(P = \oplus \sum P_\ast \) where each \(P_\ast \) is isomorphic to an indecomposable direct summand of \(nR \).

Proposition 2. If \(R \) is semi-primary then \(R \) is left \(QF-3^+ \) if and only if \(R \) is left \(QF-3 \) and the left socle of \(R \) is the direct sum of a finite number of simple left ideals of \(R \).

Received June 12, 1967.