HOMOTOPY GROUPS OF COMPACT LIE GROUPS E_6 , E_7 AND E_8

HIDEYUKI KACHI

§ 1. Introduction

Let G be a simple, connected, compact and simply-connected Lie group. If k is the field with characteristic zero, then the algebra of cohomology $H^*(G;k)$ is the exterior algebra generated by the elements x_1, \dots, x_l of the odd dimension n_1, \dots, n_l ; the integer l is the rank of G and $n = \sum_{i=1}^l n_i$ is the dimension of G. Let X be the direct product of spheres of dimension n_1, \dots, n_l ; then there exists a continuous map $f: G \longrightarrow X$ which induces isomorphisms of $H^i(X;k)$ to $H^i(G;k)$ for all i (cf. [8]). From this we deduce by Serre's C-theory [8] that $f_*: \pi_i(G) \longrightarrow \pi_i(X)$ are C-isomorphisms for all i, where C is the class of finite abelian groups. Therefore the rank of $\pi_q(G)$ is equal to the number of such i that n_i is equal to q, and particularly if q is even, then $\pi_q(G)$ is finite. It is a classical fact that $\pi_2(G) = 0$ and $\pi_3(G) = Z$.

According to Bott-Samelson [6];

$\pi_i(E_6)=0$	for $4 \leqslant i \leqslant 8$,	$\pi_{\mathfrak{g}}(E_{\mathfrak{f}})=Z,$
$\pi_i(E_7)=0$	for $4 \leq i \leq 10$,	$\pi_{11}(E_7)=Z,$
$\pi_i(E_8) = 0$	for $4 \leq i \leq 14$,	$\pi_{15}(E_8)=Z.$

where E_6 , E_7 and E_8 are compact exceptional Lie groups.

In this paper, using the killing method we compute the 2-components of homotopy group $\pi_{f}(G)$, where $G = E_{6}, E_{7}$ and E_{8} . The results are stated as follows;

j	$4\leqslant j\leqslant 14$	15	16	17	18	19	20	21	22	23
$\pi_{j}(E_{8}:2)$	0	Ζ	Z_2	Z_2	Z_8	0	0	Z_2	0	$Z + Z_2$
j	24	25	26	27	28	Ī				
$\pi_j(E_8:2)$	$Z_2 + Z_2$	Z_2	0	Z	0					

Received April 3, 1967.