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§ 1. Introduction

Let G be a simple, connected, compact and simply-connected Lie group.

If k is the field with characteristic zero, then the algebra of cohomology

H*(G k) is the exterior algebra generated by the elements x19 , xt of

the odd dimension n19 ,nt the integer / is the rank of G and n= 2 w*

is the dimension of G. Let X be the direct product of spheres of dimension

î> ,nl9 then there exists a continuous map / : G—>X which induces

isomorphisms of H\X k) to H\G fc) for all i (cf. [8]). From this we

deduce by Serre's C-theory [8] that /* : π^G) — > π^X) are C-isomorphisms.

for all /, where C is the class of finite abelian groups. Therefore the rank

of πq{G) is equal to the number of such i that nt is equal to q, and

particularly if q is even, then πq(G) is finite. It is a classical fact that

7Γ2(G) = 0 and τr3(G) = Z.

According to Bott-Samelson [6]

πlEs) = 0 for 4 < i < 8 , π9{E6) = Z,

/r,( 7̂) = 0 for 4 < ί < 10, πn(E7) = Z,

TΓ^^S) = 0 for 4 < z < 14, τr15(£8) = Z.

where Eζ,E7 and E8 are compact exceptional Lie groups.

In this paper, using the killing method we compute the 2-components

of homotopy group πj{G)9 where G =E59E7 and Zs8. The resuls are stated

as follows;
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