ON SQUARE INTEGRABLE MARTINGALES

HIROSHI KUNITA AND SHINZO WATANABE

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday.

§ 0. Introduction.

Theory of real and time continuous martingales has been developed recently by P. Meyer [8, 9]. Let $\{X_t, \mathcal{F}_t\}$ be a square integrable martingale on a probability space P. He showed that there exists an increasing process $\langle X \rangle_t$ such that

$$E((X_t-X_s)^2/\mathfrak{F}_s)=E(\langle X\rangle_t/\mathfrak{F}_s)-\langle X\rangle_s$$
 a.e. P for $t>s>0$.

The above formula suggests us that some results concerning Brownian motion can be generalized to those of martingale. Actually, if $\langle X \rangle_t \equiv t, X_t$ is a Brownian motion (See [2, Theorem 11. 9], also Theorem 2.3 of this paper), and in general, many continuous martingales may be obtained by time changes of Brownian motions ([3] and Theorem 3.1 of this paper).

Stochastic integral concerning martingale was defined by Meyer [9], Courrège [1] and in some special case, by Motoo and S. Watanabe [10]. In the present paper we shall discuss a formula on stochastic integral which is a generalization of Itô's formula [4] concerning Brownian motion. Let X_t be a Brownian motion and f be a C^2 -class function. Itô's formula is the following:

$$f(X_{\rm t}) - f(X_{\rm 0}) = \int_0^t \frac{df}{dx} (X_{\rm s}) dX_{\rm s} + \frac{1}{2} \int_0^t \frac{d^2f}{dx^2} (X_{\rm s}) ds.$$

We shall show in § 2 that when X_t is a continuous martingale, the above formula is still valid if ds is replaced by $d\langle X \rangle_s$. When X_t is not continuous, the formula becomes a more complicated form (See § 5). There, Lévy system introduced by one of the authors [11] plays an important role.

The formula on stochastic integral will be applied to two problems. In § 6, we shall discuss the structure of multiplicative functionals of a Markov process. Roughly speaking, every multiplicative functional with mean 1 is factorized into two mutually orthogonal martingales; one is continuous multiplicative functional and the other is a jump type one. § 7 is devoted to giving another proof of Lévy-Itô's decomposition of additive process (process with independent