ON A CONJECTURE OF J.S. FRAME

NOBORU ITO*

To Professor Kiyoshi Noshiro on His Sixtieth Birthday

Let \mathfrak{G} be a transitive group of degree n, and let \mathfrak{G}_1 be the stabilizer of a symbol in \mathfrak{G} . Then we owe to J.S. Frame the following remarkable relations between the lengths n_i of the orbits of \mathfrak{G}_1 and the degrees f_i of the absolutely irreducible components of the permutation matrix representation \mathfrak{G}^* of \mathfrak{G} :

(A) If the irreducible constituents of \mathfrak{G}^* are all different, then the rational number

$$F = n^{k-2} \prod_{i=1}^k n_i / f_i$$

is an integer, where k is the number of the orbits of \mathfrak{G}_1 .

(C) If the irreducible constituents of \mathfrak{G}^* all have rational characters, then F is a square.

Further J.S. Frame made the following conjecture ([1]):

- (B) If the k numbers n_i are all different, then F is a square.
- (B) is true for $k \leq 3$ ([3], §30).

Now the purpose of this short note is to show that (B) is not true in general for k=4.

Let $LF_r(q)$ be the *r*-dimensional projective special linear group over the field of *q* elements such that $p = \frac{q^r - 1}{q - 1}$ is a prime and *r* is odd. Let $V_r(q)$ and $W_r(q)$ be the *r*-dimensional spaces of column and row vectors over the field of *q* elements, respectively. Let *V* and *W* be the set of one-dimensional subspaces of $V_r(q)$ and $W_r(q)$, respectively. $\begin{cases} x_1 \\ \vdots \\ x_r \end{cases}$ and $< y_1, \ldots, y_r > \in W$ de-

note the one-dimensional subspaces generated by $\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} \in V_r(q)$ and (y_1, \dots, y_r)

^{*} This research was partially supported by National Science Foundation Grand GP-5276