R. Greenberg Nagoya Math. J. Vol. 67 (1977), 139-158

ON *p*-ADIC *L*-FUNCTIONS AND CYCLOTOMIC FIELDS. II

RALPH GREENBERG*

1. Introduction

Let p be a prime. If one adjoins to Q all p^n -th roots of unity for $n = 1, 2, 3, \cdots$, then the resulting field will contain a unique subfield Q_{∞} such that Q_{∞} is a Galois extension of Q with Gal $(Q_{\infty}/Q) \cong Z_p$, the additive group of p-adic integers. We will denote Gal (Q_{∞}/Q) by Γ . In a previous paper [6], we discussed a conjecture relating p-adic L-functions to certain arithmetically defined representation spaces for Γ . Now by using some results of Iwasawa, one can reformulate that conjecture in terms of certain other representation spaces for Γ . This new conjecture, which we believe may be more susceptible to generalization, will be stated below.

Let Q_p be the field of p-adic numbers and let Ω_p be an algebraic closure of Q_p . Let ψ be an even primitive Dirichlet character which takes its values in Ω_p and which is of the first kind (this means that the conductor of ψ is not divisible by p^2 if p is odd or by 8 if p = 2). Let K be the cyclic extension of Q associated to ψ by class field theory and let $K_{\infty} = KQ_{\infty}$, the cyclotomic Z_p -extension of K. Let M_{∞} denote the maximal abelian pro-p-extension of K_{∞} in which only primes of K_{∞} dividing p are ramified. (We also allow the infinite primes to be ramified, although this could happen only if p = 2). Now Γ can be identified in a natural way with Gal (K_{∞}/K) and, by means of this identification, we can consider Gal (M_{∞}/K_{∞}) as a Γ -module. One can then define quite simply a certain representation space W_{ψ} for Γ over Ω_p (see Section 2).

In [11], Leopoldt and Kubota have constructed a *p*-adic *L*-function $L_p(s, \psi)$ for every primitive even Dirichlet character ψ . This function is defined for all $s \in \mathbb{Z}_p$ (except for s = 1 if ψ is the principal character ψ_0) and takes its values in Ω_p . Now it follows easily from a result of

Received September 10, 1976.

^{*} This research was supported in part by National Science Foundation Grant MCS75-09446 A01.