T. Fukuda Nagoya Math. J. Vol. 63 (1976), 139–152

DEFORMATIONS OF REAL ANALYTIC FUNCTIONS AND THE NATURAL STRATIFICATION OF THE SPACE OF REAL ANALYTIC FUNCTIONS

TAKUO FUKUDA

0. Introduction.

Let A be a real analytic set, M be a compact real analytic manifold and $f: A \times M \to R$ be a real analytic function. Then we have a family of real analytic functions $f_a, a \in A$, on M defined by $f_a(X) = f(a, x)$.

Two functions f_a and f_b are said to be topologically equivalent if there exist homeomorphisms h_1 of M and h_2 of R such that $h_2 \circ f_a = f_b \circ h_1$. The number of the present mean is to mean the following

The purpose of the present paper is to prove the following

THEOREM 1. There is a Whitney stratification of A satisfying the following properties:

(i) Each stratum is a smooth subanalytic subset of A. (For the subanalycity, see $\S 3$.)

(ii) For any two points a and b belonging to the same stratum, the corresponding functions f_a and f_b are topologically equivalent.

COMMENT 1. By Theorem 1, we can see that any analytic deformation of a real analytic function on M contains locally only a finite number of topological types of functions: An analytic deformation of an analytic function $g: M \to \mathbf{R}$ is an analytic function $f: U \times M \to \mathbf{R}$, Ubeing an open set of \mathbf{R}^n , or the family $\{f_a\}$, $a \in U$, of real analytic functions on M defined by $f_a(x) = f(a, x)$ such that $f_o = g$ where o is the origin of \mathbf{R}^n . Then the above statement means that there is a neighborhood U(o) of o in U such that the number of the topological equivalence classes of functions f_a , $a \in U(o)$, is finite. This property holds even for deformations of a function of infinite codimension. This is a special phenomena for analytic deformations. In fact, it is known that there is a

Received September 30, 1974.