L. Brown, P. M. Gauthier and W. Hengartner Nagoya Math. J. Vol. 57 (1975), 49-58

CONTINUOUS BOUNDARY BEHAVIOUR FOR FUNCTIONS DEFINED IN THE OPEN UNIT DISC

LEON BROWN¹⁾, P. M. GAUTHIER²⁾ AND WALTER HENGARTNER³⁾

This paper deals with cluster sets. While cluster sets can be considered in a more abstract setting, we shall limit ourselves to the study of functions f defined in the open unit disc D of the complex plane and taking their values on the Riemann sphere \overline{C} . For p a point of the unit circle C, we denote by C(f, p) the cluster set of f at p, i.e., the set of all values $w \in \overline{C}$ for which there is a sequence $\{z_n\}, z_n \in D$, such that z_n $\rightarrow p$ and $f(z_n) \rightarrow w$. The point p is called a point of determination for f if C(f, p) is a singleton. In Section 1 we characterize the set of points of determination of a function f defined in D. Namely, it is shown that the set of points of determination is a G_{i} set, and conversely that given any G_s set E on C, there exists a bounded holomorphic function f on D, whose set of points of determination is precisely E. We then consider the class of functions meromorphic in D which have the property that each point of the unit circle is a point of determination, or what is equivalent the class of functions continuous from D to \overline{C} and meromorphic in D.

In Section 2 we fix f and consider C(f, p) as a set-valued function of the variable p. From a theorem of M. K. Fort we conclude that $C(f, \cdot)$ is continuous on a residual G_{δ} set of the unit circle. Conversely, given any residual G_{δ} set E on C, there exists a bounded holomorphic function f such that E is precisely the set of points of continuity of $C(f, \cdot)$.

Received August 10, 1972.

¹⁾ Supported in part by the National Science Foundation, Grant GP 20150.

²⁾ Supported by NRC of Canada, Grant A-5597, and a grant from the Gouvernement du Québec.

³⁾ Supported by NRC of Canada, Grant A-7339, and a grant from the Gouvernement du Québec.