Y. NamikawaNagoya Math. J.Vol. 52 (1973), 197-259 ## ON THE CANONICAL HOLOMORPHIC MAP FROM THE MODULI SPACE OF STABLE CURVES TO THE IGUSA MONOIDAL TRANSFORM*) ## YUKIHIKO NAMIKAWA ## Introduction. Let \mathcal{M}_g be the coarse moduli space of complete non-singular curves of genus g and \mathfrak{S}_g^* the coarse moduli space of principally polarized abelian varieties of dimension g. There is a canonical map: $$i: \mathcal{M}_q \to \mathfrak{S}_q^*$$ defined by sending the isomorphism class of a curve C to the isomorphism class of the Jacobian variety of C. The famous theorem of Torelli asserts that this map i is injective (e.g. [28]). Moreover the map i is holomorphic (and even algebraic). It can be seen by rewriting the map i. That is, \mathfrak{S}_{g}^{*} is defined analytically as the quotient space of the Siegel upper-half plane \mathfrak{S}_{g} of degree g by the integral symplectic group $Sp(g, \mathbf{Z})$. It can be considered as the moduli space by letting Ω mod. $Sp(g, \mathbf{Z})$ correspond to the isomorphism class of $C^{g}/(1_{g},\Omega)\mathbf{Z}^{2g}$. Then the map i can be defined as the map which sends the isomorphism class of C to the residue class of the period matrix of C, and by this definition i is known to be holomorphic (cf. (4.1)). However the spaces \mathcal{M}_g and \mathfrak{S}_g^* are not compact if g>0, which gives rise to the problem of their compactification. Several kinds of compactifications with geometrical meaning are known. In case of \mathcal{M}_g the moduli space \mathcal{S}_g of stable curves of genus g due to Deligne and Mumford gives a good compactification ([4)]. In case of \mathfrak{S}_g^* the Satake compactification \mathfrak{S}_g^* is a natural one ([19], [20]). As a set \mathfrak{S}_g^* is a union of \mathfrak{S}_g^* , $0 \leq g' \leq g$. However this compactification has too small boundary (of codimension g), so \mathfrak{S}_g^* is very singular at the boundary though normal. Igusa studied the desingularization problem ^{*)} This article was presented to Nagoya University for the author's doctorate.