Y. Teranishi Nagoya Math. J. Vol. 99 (1985), 131-146

THE FUNCTIONAL EQUATION OF ZETA DISTRIBUTIONS ASSOCIATED WITH PREHOMOGENEOUS VECTOR SPACES $(\tilde{G}, \tilde{\rho}, M(n, C))$

YASUO TERANISHI

Introduction

Let (G, ρ, V) be a triple of a linear algebraic group G and a rational representation ρ on a finite dimensional vector space V, all defined over the complex number field C.

We call the triple (G, ρ, V) a prehomogeneous vector space if G has a Zariski-open orbit. Assume that the triple (G, ρ, V) is a prehomogeneous vector space. Then there exists a proper algebraic subset S of V such that V-S is a single G-orbit. The algebraic set S is called the singular set of (G, ρ, V) . For a rational character of G, a non-zero rational function P on V is called a relative invariant of (G, ρ, V) corresponding to X if

$$P(\rho(g)x) = \chi(g)P(x) \qquad (g \in G, x \in V).$$

Let P_1, \dots, P_n be irreducible polynomials defining the components of S with codimension 1. It is known that P_1, \dots, P_n are relative invariants of (G, ρ, V) (cf. [1]). The set $\{P_1, \dots, P_n\}$ is called a complete set of irreducible relative invariants of (G, ρ, V) .

The purpose of this paper is to give an explicit expression for the Fourier transform of relative invariants on a certain class of prehomogeneous vector spaces.

NOTATION. We denote by Z, R and C the ring of integers, the rational number field and the complex number field, respectively. For $z \in C$, we set $e(z) = \exp(2\pi\sqrt{-1}z)$. We denote by M(n, C) (resp. M(n, R)) the complex (resp. real) vector space consisting of all n by n matrices with entries in C (resp. R). For any matrix x, tx denotes the transposed matrix. For

Received June 9, 1984.