A NOTE ON QUADRATIC FIELDS IN WHICH A FIXED PRIME NUMBER SPLITS COMPLETELY

HUMIO ICHIMURA

§1. Introduction

Throughout this note, p denotes a fixed prime number and f denotes a fixed natural number prime to p.

It is easy to see and more or less known that^(*) for any natural number n, there exists an elliptic curve over \overline{F}_p whose j-invariant is of degree n over F_p and whose endomorphism ring is isomorphic to an order of an imaginary quadratic field. In this note, we consider a more precise problem: for any natural number n, decide whether or not there exists an elliptic curve over \overline{F}_p whose j-invariant is of degree n over F_p and whose endomorphism ring is isomorphic to an order of an imaginary quadratic field with conductor f.

To state our results, we introduce some notations. For an order \mathfrak{o} of a quadratic field K, we write $(\mathfrak{o}/p) = 1$ when (K/p) = 1 and the conductor of \mathfrak{o} is prime to p, where (K/p) denotes the Legendre symbol. Let \mathfrak{P} be a prime divisor of p in \overline{Q} . For an order \mathfrak{o} of a quadratic field with $(\mathfrak{o}/p) = 1$, we set $\mathfrak{p}_{\mathfrak{o}} = \mathfrak{P} \cap \mathfrak{o}$ and we denote by $n_{\mathfrak{o}}$ the number of elements of the cyclic subgroup of the proper \mathfrak{o} -ideal class group generated by the proper \mathfrak{o} -ideal class $\{\mathfrak{p}_{\mathfrak{o}}\}$. Clearly, $n_{\mathfrak{o}}$ does not depend on the choice of \mathfrak{P} .

Set $M(p,f)=\{\mathfrak{o}; \text{ orders of imaginary quadratic fields with } (\mathfrak{o}/p)=1$ and conductor $f\}$. Let N(p,f) be the image of the map $M(p,f)\ni\mathfrak{o}\to n_{\mathfrak{o}}\in N$.

By some results of Deuring on elliptic curves (see e.g. Lang [6]; Chap. 13, Theorem 11, 12, and Chap. 14, Theorem 1), the preceding problem is equivalent to a problem: decide the image N(p, f).

Our results are as follows.

Theorem 1. (i) When (p|l) = 1 for any odd prime divisor l of f, and

Received March 26, 1984.

^(*) We give a simple proof in Remark 1 of § 4.