J. Shinoda Nagoya Math. J. Vol. 99 (1985), 1-10

COUNTABLE J^s_a -ADMISSIBLE ORDINALS

JUICHI SHINODA

§0. Introduction

In [3], Platek constructs a hierarchy of jumps J_a^s indexed by elements a of a set \mathcal{O}^s of ordinal notations. He asserts that a real $X \subseteq \omega$ is recursive in the superjump S if and only if it is recursive in some J_a^s . Unfortunately, his assertion is not correct as is shown in [1]. In [1], it also has been shown that an ordinal $> \omega$ is J_a^s -admissible if it is $|a|_s$ -recursively inaccessible, where $|a|_s$ is the ordinal denoted by a.

Let A be an arbitrary set. We say that an oridinal α is A-admissible if the structure $\langle L_{\alpha}[A], \in, A \cap L_{\alpha}[A] \rangle$, which we will denote by $L_{\alpha}[A]$ for simplicity, is admissible, a model of the Kripke-Platek set theory KP, where $L_{\alpha}[A]$ is the sets constructible relative to A in fewer than α steps. We use ω_1^A or $\omega_1(A)$ to denote the first A-admissible ordinal $> \omega$, and use $\omega_1(A_1, \dots, A_n)$ for $\omega_1(\langle A_1, \dots, A_n \rangle)$.

The purpose of this paper is to prove the following theorem.

THEOREM 1. Suppose $a \in \mathcal{O}^s$ and $\alpha > \omega$ is a countable $|a|_s$ -recursively inaccessible ordinal. Then, there exists a real $X \subseteq \omega$ such that $\alpha = \omega_1(J_a^s, X)$.

In the case $|a|_s = 0$, $J_a^s = {}^2E$, the Kleene object of type 2, and $\omega_1({}^2E, X) = \omega_1^x$ for all reals $X \subseteq \omega$. α is an admissible oridnal if and only if it is 0-recursively inaccessible. Therefore, Theorem 1 is an extension of the following theorem of Sacks.

THEOREM 2 (Sacks [4]). If $\alpha > \omega$ is a countable admissible ordinal, then there exists a real X such that $\alpha = \omega_1^X$.

Sacks also showed that the real X mentioned in Theorem 2 can be taken to have the minimality property:

 $\omega_1^Y < \alpha$ for every Y of lower hyperdegree than X.

Received July 8, 1983.