K. Hayasida and H. Nagase Nagoya Math. J. Vol. 97 (1985), 51-69

ON SOLUTIONS OF VARIATIONAL INEQUALITIES CONSTRAINED ON A SUBSET OF POSITIVE CAPACITY

KAZUYA HAYASIDA AND HARUO NAGASE

1. Let Ω be a bounded domain of \mathbb{R}^n with boundary $\partial\Omega$ and let E be a compact subset of Ω . We assume that both $\partial\Omega$ and E have positive capacity. The norm and the inner product in $L^2(\Omega)$ are simply denoted by $\| \|$ and (,) respectively. We define $\| u \|_1 = \| \nabla u \|$. The completion of $C_0^1(\Omega)$ with respect to the norm $\| u \|_1$ is denoted by $H_0^1(\Omega)$, where $C_0^1(\Omega)$ is the set of all functions in $C^1(\Omega)$ with compact support in Ω . The inner product of $H_0^1(\Omega)$ is written with (,). We denote by $H^{-1}(\Omega)$ the dual space of $H_0^1(\Omega)$ and by $\| \|_{-1}$ its norm.

Let K be a closed convex set in $H_0^1(\Omega)$ such that each element of K is constraind only on E, that is, if $v \in H_0^1(\Omega)$ and v = u on E for some $u \in K$, then $v \in K^{1}$. It is known that for any given $g \in H^{-1}(\Omega)$, there is a unique solution $u \in K$ of

(1.1)
$$(u, v - u)_1 \ge (g, v - u) \quad \text{for all } v \in K$$

and if g is besides in $L^2_{loc}(\Omega - E)$, the weak second derivatives $\partial^2 u$ also are there, though $\partial^2 u$ are distributions over Ω .

In particular, when g = 0 and K equals to

$$K_1 = \{v \in H^1_0(\Omega); v \ge \psi \text{ on } E \text{ in the sense of } H^1_0(\Omega)\}^{2}$$

for a given function $\psi \in C^1(\overline{\Omega})$, H. Lewy and G. Stampacchia [11] showed that the solution u of (1.1) is in $C^0(\overline{\Omega})$ under certain assumptions on Eand $\partial \Omega$, for instance, Ω is a disk and E is a segment. Their method is potential-theoretic.

Received July 6, 1983.

Revised October 17, 1983.

¹⁾ More precisely, there are two approximating sequences $\{u_j\}, \{v_j\} \subset H_0^1(\Omega) \cap C^0(\Omega)$ such that $u_j \to u$, $v_j \to v$ in $H_0^1(\Omega)$ and $u_j = v_j$ on E. Thus v = u on E except for a set of capacity zero.

²⁾ The precise definition of K_1 is referred to [11].