S. Mori Nagoya Math. J. Vol. 96 (1984), 127-132

ON DEGREES AND GENERA OF CURVES ON SMOOTH QUARTIC SURFACES IN P³

SHIGEFUMI MORI

Our result is motivated by the results [GP] of Gruson and Peskin on characterization of the pair of degree d and genus g of a non-singular curve in P^s . In the last step, they construct the required curve C on a singular quartic surface when $g \leq (d-1)^2/8$. Here we consider curves on smooth quartic surfaces.

The author expresses his hearty thanks to Professor Hartshorne who pointed out a mistake in the earlier version of this paper, and to Professor litaka who kindly allowed the author to use his word processor to write up this paper.

THEOREM 1. Let k be an algebraically closed field of characteristic 0 and d > 0 and $g \ge 0$ be integers. Then there is a non-singular curve C of degree d and genus g on a non-singular quartic surface X in \mathbf{P}^3 if and only if (1) $g = d^2/8 + 1$, or (2) $g < d^2/8$ and $(d, g) \neq (5, 3)$.

Remark 2. Under the notation of Theorem 1, $g = d^2/8 + 1$ if and only if C is a complete intersection of X and a hypersurface of degree d/4, which will be proved in the proof below.

Proof of the only-if-part (\Rightarrow) of Theorem 1. Let $H = \mathcal{O}_x(1)$. Since $(H \cdot H) > 0$, one has

$$(C\cdot H)^2-(H\cdot H)\cdot(C\cdot C)=d^2-8(g-1)\geq 0$$
,

by Hodge index theorem, because X is a K3 surface and $K_c = \mathcal{O}_c(C)$. One has $d^2 \equiv 0, 1, 4, 1 \pmod{8}$ according as $d \equiv 0, 1, 2, 3 \pmod{4}$. If $d^2 - 8(g-1) = 0$ then the classes of $\mathcal{O}_X(C)$ and $\mathcal{O}_X(H)$ are proportional. Since X is a K3 surface and $(H \cdot H) = 4$, Pic X is torsion-free and H is not divisible, whence $\mathcal{O}_X(C)$ is a multiple of $\mathcal{O}_X(H)$, which implies that C is a complete intersection of X and a hypersurface of degree d/4. It

Received November 17, 1983.