M. Koike Nagoya Math. J. Vol. 95 (1984), 85-89

ON McKAY'S CONJECTURE

MASAO KOIKE

Let $\eta(z)$ be Dedekind's η -function. For any set of integer $g = (k_1, \dots, k_s)$, $k_1 \ge k_2 \ge \dots \ge k_s \ge 1$, put $\eta_g(z) = \prod_{i=1}^s \eta(k_i z)$. In this paper, we shall prove McKay's conjecture which gives some combinatorial conditions about k_i on which $\eta_g(z)$ is a primitive cusp form. As to McKay's conjecture, we refer [5].

To state our result precisely, we introduce some notation. For every positive integer N, put

$$arGamma_{\scriptscriptstyle 0}\!(N) = egin{cases} a & b \ c & d \end{pmatrix} \in SL(2,\,oldsymbol{Z}) \,|\, c \equiv 0 ext{ mod } N \ iggr\}.$$

Let k be a positive integer and let ε be a Dirichlet character mod N such that $\varepsilon(-1) = (-1)^k$. We denote by $S_k(N, \varepsilon)$ (resp. $S_k^0(N, \varepsilon)$) the space of the cusp forms (resp. new forms) of type (k, ε) on $\Gamma_0(N)$. We call $f(z) = \sum_{n=1}^{\infty} a_n e(nz)$ in $S_k^0(N, \varepsilon)$ primitive cusp form if it is a common eigenfunction of all the Hecke operators and $a_1 = 1$ where $e(z) = e^{2\pi i z}$. Then it is well-known that $S_k^0(N, \varepsilon)$ has a basis whose elements are all primitive cusp forms.

McKay conjectured

THEOREM. Let $\eta_{\mathcal{B}}(z) = \prod_{i=1}^{s} \eta(k_i z)$ be as above. The following statements (a) and (b) are equivalent.

- (a) $\eta_g(z)$ is a primitive cusp form.
- (b) $g = (k_1, \dots, k_s)$ satisfies the conditions (1)~(4);
 - (1) k_1 is divisible by k_i for all $1 \le i \le s$.
 - (2) Put $N = k_1 k_s$, then $N/k_i = k_{s+1-i}$ for all $1 \le i \le s$.
 - (3) $\sum_{i=1}^{s} k_i = 24.$
 - (4) s is even.

In these cases, $\eta_g(z)$ is a primitive cusp form in $S^0_{s/2}(k_1k_s, \varepsilon)$ for some Dirichlet character $\varepsilon \mod k_1k_s$.