T. Kohno Nagoya Math. J. Vol. 92 (1983), 21-37

ON THE HOLONOMY LIE ALGEBRA AND THE NILPOTENT COMPLETION OF THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF HYPERSURFACES

TOSHITAKE KOHNO

§1. Introduction

The purpose of this paper is to establish the following isomorphism of Lie algebras.

MAIN THEOREM. Let X be the complement of a hypersurface S in the complex projective space \mathbf{P}^N . Then the tower of nilpotent complex Lie algebras associated with the fundamental group $\pi_1(X, *)$ and the holonomy Lie algebra \mathfrak{g}_S attached to S are isomorphic. In particular, if S is the union of hyperplanes $\bigcup_{j=1}^{m+1} S_j$ in \mathbf{P}^N , the nilpotent completion of $\pi_1(X, *)$ is isomorphic to the nilpotent completion of

$$\operatorname{Lib}(X_1, X_2, \cdots, X_{m+1})/\mathscr{A}$$

where we denote by Lib $(X_1, X_2, \dots, X_{m+1})$ a free Lie algebra generated by X_1, X_2, \dots, X_{m+1} over C, and \mathscr{A} is the homogeneous ideal generated by the following elements

I) $\sum_{j=1}^{m+1} X_j$,

II) $[X_{\nu_j}, X_{\nu_1} + \cdots + X_{\nu_p}], \quad 1 \leq j \leq p$

where the hyperplanes $S_{\nu_1}, \dots, S_{\nu_p}$ satisfy $H \cap S_{\nu_1} \cap \dots \cap S_{\nu_p} \neq \phi$ for a generic plane H and $H \cap S_{\nu_1} \cap \dots \cap S_{\nu_p} \cap S_k = \phi$ if $k \in \{\nu_1, \dots, \nu_p\}$.

For a smooth manifold we have a surjective homomorphism from the tower of the nilpotent completion of the holonomy Lie algebra to the tower of the nilpotent complex Lie algebras associated with the fundamental group (cf. [C]). Our main theorem guarantees that this map is an isomorphism in the case of the complement of hypersurfaces (cf. [A] Theorem 2).

In Section 2 we review the notion of holonomy Lie algebras and

Received September 29, 1981.