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CURVATURE, GEODESICS AND THE BROWNIAN MOTION

ON A RIEMANNIAN MANIFOLD I

RECURRENCE PROPERTIES

KANJI ICHIHARA

§ 0. Introduction

Let M be an n-dimensional, complete, connected and locally compact

Riemannian manifold and g be its metric. Denote by ΔM the Laplacian

on M.

The Brownian motion on the Riemannian manifold M is defined to

be the unique minimal diffusion process (Xt, ζ, Px, x e M) associated to the

Laplacian ΔM where ζ is the explosion time i.e. if ζ(ω) < +oo, lim.Xr

ί(<y)
t-*ζ

= oo. It should be remarked that ζ — +oo a.s. if M is compact. See
Mckean [7], page 90.

The Brownian motion X on M is said to be recurrent if for every

open subset U of M
Px{ω\Xt{ω) e U for some ί > 0 } = l o n M ;

otherwise it will be called transient.

It has been known that the Brownian motion on a compact Riemannian

manifold is recurrent. See for example Mckean [7] page 99. In this paper

we shall restrict our consideration to non compact case and clarify the

relation between the recurrent and transient properties of the process X

and geodesies, curvature of M.

In the first section we shall summarize recurrence and transience of

the Brownian motion on a rotationally symmetric Riemannian manifold

(See Section 1 for the precise definition). Section 2 is devoted to the dis-

cussion for the general case. Some examples will be shown in the last

section.
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