SOME LIE ALGEBRAS OF VECTOR FIELDS AND THEIR DERIVATIONS CASE OF PARTIALLY CLASSICAL TYPE

YUKIHIRO KANIE

Introduction

Let (M, \mathcal{F}) be a smooth foliated manifold, and $\mathcal{F}(M, \mathcal{F})$ the Lie algebra of all leaf-tangent vector fields on M.

Assume that (M, \mathcal{F}) admits a partially classical structure τ, ω or θ (see § 4.1). Then we have natural Lie subalgebras $\mathcal{F}_{\mathfrak{c}}(M, \mathcal{F})$, $\mathcal{F}_{\mathfrak{c}\mathfrak{c}}(M, \mathcal{F})$, $\mathcal{F}_{\mathfrak{c}\mathfrak{c}}(M, \mathcal{F})$, of the Lie algebra $\mathcal{F}(M, \mathcal{F}) = \mathcal{F}_{\mathfrak{d}}(M, \mathcal{F})$ (see § 4.2). These Lie algebras including $\mathcal{F}(M, \mathcal{F})$ itself are called of partially classical type. Here we study the structures of those Lie algebras and their derivation algebras.

The derivation algebra of $\mathcal{F}(M,\mathcal{F})$ is naturally isomorphic to the Lie algebra $\mathcal{L}(M,\mathcal{F})$ of all locally foliation-preserving vector fields on M (see [4]). We get similarly natural Lie subalgebras $\mathcal{L}_{\mathfrak{c}}(M,\mathcal{F})$, $\mathcal{L}_{\mathfrak{c}\mathfrak{c}}(M,\mathcal{F})$, $\mathcal{L}_{\mathfrak{c}\mathfrak{c}}(M,\mathcal{F})$ of $\mathcal{L}(M,\mathcal{F}) = \mathcal{L}_{\mathfrak{d}}(M,\mathcal{F})$ (see § 4.2).

Our main results (announced in [11]) are

MAIN THEOREM. Let M be a smooth (p+q)-dimensional manifold, and \mathcal{F} a codimension q foliation on M. Assume that (M,\mathcal{F}) is equipped with a partially classical structure τ , ω or θ .

(a) Let
$$\sigma = 0$$
, $c\tau(p \neq 1)$, $c\omega$ or θ . Then

$$\begin{split} H^1(\mathcal{L}_{\sigma}(M,\mathcal{F});\mathcal{L}_{\sigma}(M,\mathcal{F})) &= 0 , \\ H^1(\mathcal{T}_{\sigma}(M,\mathcal{F});\mathcal{T}_{\sigma}(M,\mathcal{F})) &\cong \mathcal{L}_{\sigma}(M,\mathcal{F})/\mathcal{T}_{\sigma}(M,\mathcal{F}) . \end{split}$$

(b) Let
$$\sigma = \tau(p \neq 1)$$
 or ω . Then

$$H^1(\mathscr{L}_{\mathfrak{o}}(M,\mathscr{F});\mathscr{L}_{\mathfrak{o}}(M,\mathscr{F})) \cong \mathscr{L}_{\mathfrak{co}}(M,\mathscr{F})/\mathscr{L}_{\mathfrak{o}}(M,\mathscr{F}) ,$$

 $H^1(\mathscr{T}_{\mathfrak{o}}(M,\mathscr{F});\mathscr{T}_{\mathfrak{o}}(M,\mathscr{F})) \cong \mathscr{L}_{\mathfrak{co}}(M,\mathscr{F})/\mathscr{T}_{\mathfrak{o}}(M,\mathscr{F}) .$

Received October 26, 1979.