H. Saito Nagoya Math. J. Vol. 80 (1980), 129-165

ON A DECOMPOSITION OF SPACES OF CUSP FORMS AND TRACE FORMULA OF HECKE OPERATORS

HIROSHI SAITO

Introduction

For a positive integer N, put

$$arGamma_{\scriptscriptstyle 0}(N) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_{\scriptscriptstyle 2}(Z) | \, c \equiv 0 \pmod{N}
ight\}.$$

For a positive integer κ and a Dirichlet character ψ modulo N, let $S_{\epsilon}(N, \psi)$ denote the space of holomorphic cusp forms for $\Gamma_0(N)$ of weight κ and character ψ . For a positive integer *n* prime to *N*, the Hecke operator T_n is defined on $S_{\kappa}(N, \psi)$, and in the case where $\kappa \geq 2$, an explicit formula for the trace tr T_n of T_n is known by Eichler [6] and Hijikata [8]. But for higher levels, in particular, when N contains a power of a prime as a factor, this formula is not suitable for numerical computations. It is natural to ask a decomposition of $S_{\epsilon}(N, \psi)$ stable under the action of Hecke operators and a formula for tr T_n on each subspace. In fact, when ψ is the trivial character ψ_1 , Yamauchi [18] gave a decomposition of $S_{\epsilon}(N, \psi_1)$ and a formula for tr T_n on each subspace by means of the normalizers of $\Gamma_0(N)$. In the case where $N = p^{\nu}$ with a prime p, $S_{\mu}(p^{\nu}, \psi_1)$ is divided into two subspaces by this decomposition. When $\nu \geq 2$, in Saito-Yamauchi [11] another decomposition of $S_{\epsilon}(p^{\nu},\psi_{i})$ into four subspaces and the formulas for tr T_n on these subspaces were given by using the normalizer $W = \begin{pmatrix} 0 & -1 \\ p^* & 0 \end{pmatrix}$ of $\Gamma_0(p^{\nu})$ and the twisting operator R_{ϵ} for ϵ the quadratic residue symbol modulo p. In this paper, we shall generalize these results. In $\S1$, we define an operator U_{χ} on $S_{\lambda}(N, \psi)$ for a character χ which satisfies a certain condition. This operator is a generalization of $R_{*}WR_{*}W$ in [11]. In a similar way as in [11], we can give a formula for tr $U_{r}T_{n}$ and also for tr $U_x WT_n$ with a normalizer W of $\Gamma_0(N)$ when ψ is trivial (§ 2. Th. 2.5. and Th. 2.9.). In § 3, we shall prove a multiplicative property of U_{χ} . This

Received May 8, 1979.