G. Faltings Nagoya Math. J. Vol. 77 (1980), 99-106

A CONTRIBUTION TO THE THEORY OF FORMAL MEROMORPHIC FUNCTIONS

GERD FALTINGS

In my paper [F3] I more or less explicitly conjectured that if A is a complete local integral domain with maximal ideal m and if $I = (t_1, \dots, t_n)$ is an ideal in A with $n \leq \dim(A) - 2$, then Spec $(A/I) - \mathfrak{m}$ is G3 in Spec $(A) - \mathfrak{m}$. This will be proved in this paper.

Unfortunately the algebraisation-theorems for subsheaves in [F3] make great difficulties in this context, and I only can prove similar theorems, where I deal not with complete local rings but with a different category which will be explained in detail later. At least our theorems are sufficient to deal with projective varieties.

As corollary I obtain for example a strong generalisation of the G3-theorems in [S].

This work was supported by the Deutsche Forschungsgemeinschaft.

§1. Notations

All rings are commutative, noetherian and have a unit. If A is such a ring, $\mathscr{I} \subseteq \mathfrak{a} \subseteq A$ two ideals, such that A is complete in the \mathscr{I} -adic topology, then X:= Spec (A), Y:= Spec $(A/\mathscr{I}) \subseteq X$, Z:= Spec $(A/\mathfrak{a}) \subseteq Y$, $U:=X-Z, \hat{X}:=$ Spf (A) = formal completion of X along Y and $\hat{U}:=$ formal completion of U along $U \cap Y$. If anywhere in this paper there appears a ring A with ideals \mathscr{I} and \mathfrak{a} , these notations are used without further comment. If there occur other rings A_1, A_2, \cdots with ideals $\mathscr{I}_1, \mathscr{I}_2, \cdots$ and $\mathfrak{a}_1, \mathfrak{a}_2, \cdots$, then $X_1, X_2, \cdots, U_1, U_2, \cdots$ etc. are defined according to these data in the same way as above.

If f moves in a system of generators for α/\mathscr{I} , then \hat{U} can be glued together from the Spf $(A_{(f)})$, where $A_{(f)}$ is the \mathscr{I} -adic completion of the ordinary localisation $A_{(f)}$. If M is a finitely generated A-module, then Minduces a coherent sheaf on \hat{X} and \hat{U} . Sheaves arising in this way are

Received December 12, 1978.