FIRST CHERN CLASS AND HOLOMORPHIC TENSOR FIELDS

SHOSHICHI KOBAYASHI*)

1. Introduction

Let M be an *n*-dimensional compact Kaehler manifold, TM its (holomorphic) tangent bundle and T^*M its cotangent bundle. Given a complex vector bundle E over M, we denote its *m*-th symmetric tensor power by $S^m E$ and the space of holomorphic sections of E by $\Gamma(E)$. In [4] we have shown that $\Gamma(S^m TM) = 0$ (resp. $\Gamma(S^m T^*M) = 0$) if $c_i(M) \leq 0$ (resp. $c_i(M) \geq 0$) and if M is simply connected. (For the precise statement of a little stronger result, see [4]).

In this paper we consider more general tensor bundles. Our results may be summarized as follows:

THEOREM A. Let M be a compact Kaehler manifold with $c_1(M) < 0$ (i.e., with ample canonical line bundle K_M). Let

$$T^r_s M = \left(\stackrel{r}{\otimes} TM
ight) \otimes \left(\stackrel{s}{\otimes} T^*M
ight).$$

If r > s, then $\Gamma(T_s^r M) = 0$, i.e., there is no holomorphic tensor fields of contravariant degree r and covariant degree s.

The theorem above is an immediate consequence of a theorem of Bochner [7] and a recent result of Aubin [1] and Yau [8].

COROLLARY A.1. Let M be as above. Let m be a non-negative integer and q a (possibly negative) integer. Then

(1) $\Gamma(S^m TM \otimes K^q_M) = 0$ for m - qn > 0,

(2) $\Gamma(S^mT^*M\otimes K^q_M)=0$ for -m-qn>0.

Received July 24, 1978.

Revised November 25, 1978.

^{*)} This is a revised version of "Negative first Chern class and holomorphic tensor fields" which was prepared while the author was a Guggenheim Fellow visiting Bonn under SFB program. Currently, the author is supported partially by NSF Grant MCS 76-01692.