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A CONSTRUCTION OF
g-ANALOGUE OF DEDEKIND SUMS
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0. Introduction

If one looks back the classical proof (cf. Carlitz [4]) of the reciprocity law for
Dedekind sums in order to construct g-analogue of Dedekind sums which also
have the reciprocity law, one can soon see that the following elementary equation
is essential in the proof:
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for any distinct complex numbers # and v, where means the generating
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function of Euler numbers associated to #. So we must extend the above equation
to the generating function of g-Euler numbers for our purpose. As a result, we
obtain a very suggestive equation (see Lamma 5) under the conditions |%|> 1 and
lv] > 1:
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where F,,(f) means the generating function of g-Euler numbers associated to %
and the left hand side of (2) is determined by Lemma 4. The above equation is
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take a deep interest in the invariance of the form. By the generalization of the

correspond to the decomposition into partial fractions of 1 (1). We

theory, we give a new method of construction of g-analogue of formal power
series. In the following, we explain about the essence of our theory. In [2], Carlitz
defined g-Bernoulli numbers for a complex number ¢ as follows:
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